472_Physics ProblemsTechnical Physics

472_Physics ProblemsTechnical Physics - 474 Wave Motion...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
474 Wave Motion Q16.11 Slower. Wave speed is inversely proportional to the square root of linear density. Q16.12 As the wave passes from the massive string to the less massive string, the wave speed will increase according to v T = µ . The frequency will remain unchanged. Since vf = λ , the wavelength must increase. Q16.13 Higher tension makes wave speed higher. Greater linear density makes the wave move more slowly. Q16.14 The wave speed is independent of the maximum particle speed. The source determines the maximum particle speed, through its frequency and amplitude. The wave speed depends instead on properties of the medium. Q16.15 Longitudinal waves depend on the compressibility of the fluid for their propagation. Transverse waves require a restoring force in response to sheer strain. Fluids do not have the underlying structure to supply such a force. A fluid cannot support static sheer. A viscous fluid can temporarily be put under sheer, but the higher its viscosity the more quickly it converts input
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/14/2011 for the course PHY 203 taught by Professor Staff during the Fall '11 term at Indiana State University .

Ask a homework question - tutors are online