{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

636_Physics ProblemsTechnical Physics

# 636_Physics ProblemsTechnical Physics - 638 Heat Engines...

This preview shows page 1. Sign up to view the full content.

638 Heat Engines, Entropy, and the Second Law of Thermodynamics P22.16 The Carnot summer efficiency is e T T c s c h , . = = + + = 1 1 273 20 273 350 0 530 a f a f K K And in winter, e c w , . = = 1 283 623 0 546 Then the actual winter efficiency is 0 320 0 546 0 530 0 330 . . . . F H G I K J = or 33 0% . P22.17 (a) In an adiabatic process, P V PV f f i i γ γ = . Also, P V T PV T f f f i i i F H G I K J = F H G I K J γ γ . Dividing the second equation by the first yields T T P P f i f i = F H G I K J γ γ 1 b g . Since γ = 5 3 for Argon, γ γ = = 1 2 5 0 400 . and we have T f = × × F H G I K J = 1 073 300 10 1 50 10 564 3 6 0 400 K Pa Pa K . b g . . (b) E nC T Q W W V int = = = eng eng 0 , so W nC T V eng = − , and the power output is P P . = = = = × = W t nC T t V eng mol kg or kg J mol K K s W 212 kW 80 0 8 314 564 1 073 60 0 212 10 1.00 0 039 9 3 2 5 . . . . b g e jc hb gb
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}