FRADE_STA5168_paper

FRADE_STA5168_paper - Credit Risk Modeling: Default...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Credit Risk Modeling: Default Probabilities Jaime Frade December 28, 2008 Contents 1 Introduction 1 1.1 Credit Risk Methodology . . . . . . . . . . . . . . . . . . . . . . 1 2 Preliminaries 2 2.1 Financial Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Methods of Modeling Credit Risk 3 3.1 Existing Methods of Quantitatively Scoring . . . . . . . . . . . . 3 3.2 Two Classes of Quantitative Models . . . . . . . . . . . . . . . . 4 3.2.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . 4 3.2.2 Structural Models . . . . . . . . . . . . . . . . . . . . . . 4 4 Methodology 7 4.1 A Statistical Model: Logistic Regression . . . . . . . . . . . . . . 7 4.2 Choosing a Significant Model . . . . . . . . . . . . . . . . . . . . 8 5 Data Description 9 5.1 Defaulted Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.3 Predictors for Logistic Regression Model . . . . . . . . . . . . . . 10 6 Results 12 6.1 Saturated Logistic Regression Model 1 . . . . . . . . . . . . . . . 12 6.1.1 Saturated Logistic Regression Model 1: Output and Di- agnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.1.2 Saturated Logistic Regression Model 1 Interpretation . . 13 6.2 Logistic Regression Reduced Model 2 . . . . . . . . . . . . . . . . 14 6.2.1 Logistic Regression Model 2: Output and Diagnostics . . 14 6.2.2 Logistic Regression Model 2: Interpretation . . . . . . . . 14 6.3 Logistic Regression Reduced Model 3 . . . . . . . . . . . . . . . . 16 6.3.1 Logistic Regression Model 3: Output and Diagnostics . . 16 6.3.2 Logistic Regression Model 3: Interpretation . . . . . . . . 16 6.3.3 Logistic Regression Model: Excel Output . . . . . . . . . 17 7 Validation Techniques 18 7.1 Bootstrapping Confidence Intervals for Accuracy Ratios . . . . . 18 7.1.1 Bootstrapping Confidence Intervals: Output . . . . . . . . 19 7.1.2 Accuracy Ratios Confidence Intervals: Interpretation . . . 19 i 8 Comparison and Predications 20 8.1 Comparison of Results . . . . . . . . . . . . . . . . . . . . . . . . 20 9 Conclusion 26 ii List of Figures 6.1 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.2 SAS Output: Saturated Logistic Model . . . . . . . . . . . . . . 13 6.3 SAS Output: Reduced Logistic Model 2 . . . . . . . . . . . . . . 14 6.4 SAS Output: Reduced Logistic Model 3 . . . . . . . . . . . . . . 16 6.5 Excel Output: Logistic Models . . . . . . . . . . . . . . . . . . . 17 7.1 Confidence Intervals for Accuracy Ratios of Model. . . . . . . . . 19 8.1 Sorted Comparison of Prediction Results: By Reduced Logistic Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8.2 Sorted Comparison of Prediction Results: By Reduced CRE Model 23 8.3 Sorted Comparison of Prediction Results: By Reduced CDP Model 24 8.4 Sorted Comparison of Prediction Results: By Reduced Altmans Z-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 iii Acknowledgments...
View Full Document

This note was uploaded on 12/15/2011 for the course STAT 5168 taught by Professor Staff during the Fall '08 term at FSU.

Page1 / 34

FRADE_STA5168_paper - Credit Risk Modeling: Default...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online