{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

notes6 - D 73 r ibcd'fonql Transform 5‘ We Shall use We...

Info iconThis preview shows pages 1–24. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 18
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 20
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: D 73+r ibcd'fonql Transform 5‘ We Shall use We mama/Y?L genermL/‘n? Fancflom (W870) Mxm = Ea“ , Th0? are. many O‘Hfier ”franmcorms“ I LaPlace +ranswcorm ¢(?\) 1: Eg‘AX CMFGC+€F7$fiC ‘Pme'h‘OW gsrt) 2'— E Q C Fourier ‘l‘mnmcomfl , , 1. x ProbabHHy genemfirg 'Fund‘wh ¢(Z) ’ L Z a They are a” closely raided, i75>< The M G F t X Definifian: Mxfi) S E a ‘93}, an 7’: In 0. neighborhoodf (-SJE) 0? 18m (war-wise we, Say ”5(6) Jae: mo‘f Qxfs‘l') . MXHZ) 5-“- : gfxf (75) f0!“ 0/[5CFQ7LQ/ V‘V’S‘. 9c€-% X Simfle QXCQQEIQ’S The Um'mForm dis‘fr‘ibwh'om IF X NUni¥oryvx(O)|)) ‘Hflem _. 75X” ”fix MXH‘J ”Ee ~j a acme/x F I =fletx./a/7c : Qfx/ set—J o t 0 f __ I For 75:0 MXCt)-— 16 8g! 1%”— t¢o We” Mm! Far “00<‘€<<>0 . The BV‘OTNQ‘ an’s‘rribmHom , V1 2< N Bmomrq! (hjp) :; cht) zaaffiw‘j For ,00<f<oo ( see “#6fo These are exqwz’oles mo boumgaéfl PV’SI’ Them QXI‘Sf firm? Vales ajb Sud/1 \flin‘f' 1D(ELS><SE) 33/ (50%1’7416/00fl7por 7077770 [5 zero oufifc/e mp [335]) . For bouanQOQ Y‘V)S X) MX (f) {s 7cinhLe/ (Wel/ Map/meal) for g_/_/ If) ExK is 5% (MI/owned) 7% 9311 /< (Kr—we’re). o ,_ x300 :: 7\€& ABK f*X xzo ° <7\ 2 $23!: Wt“ ”E t 00 ¥ort27\ "The, &0uble QXEOMM‘W disTflbcCHoh quad we, 85 00 t... 2 i4 O €6€+>OVCOEX+JZJA Q; >0de \fLW—z M -00 ‘53 £+ASO = 00 H: t‘?\30 Or t$“7\ 0!” t2} 3 _L $61-ch ’0 + QPC—AJx/mj 2' t+7x "°° t‘7\ o .. __ ___L_,. —-- lz7\[ 7\+t +fi] ¥OF~7\<—t<>\ (Tha mac—éj IS 00 OF uthQPian ad‘sfle 0? “firms range.) Since -—>\<JC<?\ Imluofias a neijaorhoooI aboofi zero) Wg 30>! ‘Hbd’ MX (t) QXTS’fS. W 15XOC): ”L “”1“" 760/. ~o<><x<0<3. M)< (t) = J 6 771mg?) —-00 ~ l For {3:20 00 (or unflfifi‘ned’) For tiO , , ‘6 Smog (am $3.,» :2 00 790:” £>O 7c—>°O TWP/>61) and) Hm 8f?” :00 ‘For' t<o , 769’” 7fit+7¢1> The, 36" {0} does @537: can'f'ain an 1n+ervaf abouT 26-6) 5’0“th may Joesmi exist The SEQ-F ga‘ds To exisT “For man JI'SWI’ij-I’OWS. For is $9430)“; ‘Pne ”ohamc+e)r/‘Tsfic Mama” Is ()6ch Insteaoq 01C ‘H’K’, mg? in More “Wearéfhcal Courses . HamQy Fads (-901- dneckin wark) MXGC) IS Convex am? Thg‘t’WQV Jigerenfiable, (Where, 092? Theo!) ) , Various Progr‘f’fas 07C [4737035 ”We Momen erm r0 ‘f Theorem: LC MXHZJ eXisfs (is F7107“)? in an fn‘f’Qfl/QI (—636) ) ) ‘erh EXK 2:. Mg’flo) K 2 5%) med/t For $952)?)) , “0 “Eng D (“0+ Comfldqw Famous) (K) a” K fix MX (‘6): 57%: EQ ' . +€Fclfla :: E(_Q/— [<an m n c/ K n 0/25.é @275) 57% = E XKQ X Now pmj m cho +0 8:21" M (K) __ K x (O) " EX . Q When can “fine ‘xvfi’erdncznéag 7h 3: be, damage? ? Ea1E>< = f 6149:; (900/96 0’” 2 $7676 (7‘) X x6% X (conhhuouS‘ FIV. ) (ca/[50972 PM) $0 770e, gueflL/Em becomes .3 When Can We, [Mere/qqme, j‘é anal f Orfiaho/Z? 775173 award gum/jinn I'S aC/C/feSSec/ In SedL/om 2, 1;— (Opflbnq/ ) We (”z/y on7’7‘u'3 7550“ .' Lei :1: == {15 Ee‘ékoo}. I; f 58/0)sz 7L0 7%6 I'mLer/or 0/3 I (0.91— am Mpg/H79); ‘I‘fiefl 91K '0‘... O/Ktx alt E2 “EC/7)€ 7%;— /<=I)2)3J... W H ZM' $117+ ~'—__—?\t]3~x<t<>\. Mm) >< (t)==-—'2-;L[("I)KKE +L] (for—A<t<7\) EXK: “O MX (O) : O ‘FOI’ Odd K Ki, ._,..... For even K 7\l< Scaliyx Pro r1765 67? m ‘FDS (a 61ch b are carsTanTs) Pm"? 5 -t(a x+b> M3><+bC ) = ‘— Q, ‘I: z E e(at)><eb :; eb‘t E e(a‘t)>< (Emma/es jfiven lafér‘) MMG F55 For Sums 07C 7100/ roan—IL {Au/’5 IF XDY are I'm/apem/enf Int/95} WW) M are 6M2? led Swan/med J IF XJY arg ,‘MQPGIAWS and MX(0)3 MY“) //€,><I’S7L:; Then MX+Y<°) ZXTSj'S and, 733%?) by Furfl'her Brogerfles 07F M370 ’5 Assume all ”1370’s below ”exis‘f’”) ‘They are defined” and finite in Some, IWQWQ) (”€)5) Q) I? M (we): M (f) feral/t m same Hefihbwbooa/ 076 zero wen ><——- dY (med/2m F;<—-(t3 *‘ F (t) farce/l t), BQSfa‘reVHflZH-i' 772g??? 3 are Two Wk w $77M Same W155? mufl‘ hat/e +be same dz's‘fr/buf’ I'm @ If: Y ><U><aj><33u . are. r‘v’s wrfiv MX H<fi)“‘>M (t) ‘Fardl/t In ”(as new) same, neighbor/0006’ 070 2872?) “H72h J XV) ——-> Y ( c6603 awe/62) Resfa‘femen‘f.‘ Can vegzence 070 My? ’5 {Mp/[es cam/e me 0,0 Cdpg‘ Der'erfcw (of Convaaence, 'm D is‘rribu’r ion) F (t) a F (t) Far all t Xn Y (exce p1“ perhafis 011’ value: 07C ‘6: Where, FY ' as qa’ump), A HequQ m‘ffl'iah Hm F (‘13): F (‘13) ’For‘aH JC > V\">°° XH Y «@(Cé/Froo' FacT @ £15in ”Hm" no‘Wl'an .‘ I? Hm Mxn(t>=MY(t) 71-4900 1CoraH t in. a. neghwrhmfl 010 zero) ‘Pneh Hm T3 (t) = F (t) for a/Jt' new Xn Y asap?“ per/Imps where Er has a Jump. (D “mm @6va wk X and Y myth emcerem‘ 00317“ I'buf/bns ) bLUL 7974 same, mam 647%.“ E><K== EY" fir @523)”. bu‘l’ f; i E; . @ There, exis‘!’ seguenceé 0? PW: 7991— u/hich all WWW Com/e J loaf c6170 ’3 5% mt Buff ndfei ’ 135’ XJY ma batmaZaa/ f‘vvs 0290/ W Eszgy/K for K‘UQ/BJ'” ) ”Hoary arr-FY . I; YNNQLJO-z) and’ lim 12x;< = EYK n’>°° for 4/} /<) flan Xnia Y (c0660; convex—jg)‘ EXafl‘Q: IHusTrad'm Q) m 4" 0F SMMS of: EYQZQPQMQQM' rv’s. @ m3? uniiuelx/ offizrmmes Jiffy». Suppose, XIJXZ are NO! Expoheflhami) win JensH/ Rx): 6:76) 967/0 and "1336 MHZ): Ti 3t<1. Wha‘l’ are ‘th m3“? and GUS—rho 01C Y: ”12(th-X2) :2 Solu‘h'oni MY(t) 2: M54” _&)(f) 2. f2 Sndapemdefi FV’S : Mhat)M_lg(t) 2 2 \ . l --—— 4: .— <f<2 \-—-—‘-—Jc Hit or 2 Since bofln 4?: t 0009 "-‘i‘t mws+ be, \eSS "‘Hflah 1 5:0!— m3? +0 be oQchineJ Whidfl we Fecagrflze as ‘HW, m3? O‘F CL douHe @POnéMTa‘ disi‘h. w'rHfi A32 ,, Thus Y has dens‘n‘y {(051) : “2’35 -—oo<gL<<>O. This is “Hm m3? OF‘HM N J02) disfine So by uniguehess (3 maps Wg, COflCILLCgQ Y/V NMJO'Z), EH.» Qm‘ (a e' COWQ’ELWOZ 0‘6 Géomdr‘ic a? {31%. 7 To EXponeh+Tal 0315M, (com CL\SO be d’ome easily WWW“ mfg) Backgrounoo GeomEerQP) diS‘hO. 76-" mm? ¥X<%):10(l-p) veer 76:19:53).“ .6. .m37c MXPC) :\ 9; % jfior t<—l(5(|—1D) x [(9 3 I mgflc MXH?) :- (”£75221 4:01" ‘1: < 73' H Res“ anal Y WI‘H‘) " ' 2 M ‘13) I—t Y( Th'xs 13 WNW 7C0)“ 0x” t<l, QED Nate: MV (t) Is wu—oflaflne'o! Y\ 1cm t<”h‘oj(l~%> am? “magi—Jaw 7C0r n:\)a/)3)°v: . Examiglei’ Cevd’rq] [‘1me Thacram “For \HAQ Poisson 0975+. Backg memo! x N P01530n0x) has 4W4? ‘Cx‘m: if 7% 1:952}... ' Jc 30' E7: >\ “Exercise” an ’5 VarXZX ' RéSuH: when 7x 15 (arja) X has avprox'yma+€})z 0L normal dist The“ Is) Xflv?‘ has approx 0L MOON W dish). F0 rma‘ STaTemanT 3 CO . i l S 0 S “OW ‘h | 4 S C ,— n‘h W W W 33>- “r -tW W h Now [QT Ifl—900 ang 3% th‘l‘ happe Hm ms, n Subs‘h’hfire, LL: .L (504% Jr .3. nofe‘fhod’ UL—> 0W3 n9 Q n: a 00 QX , has JForum 0/O in “W hm'qu AW L°H65Ffial°s rule (mice) Hm (3:12;) LL90 =l'nm <t€:t— w-f) m90< == Hm file at =— t1 u~>0<£ 2 J .2“ 7_ :Q fizz/Z Mot) We my“ ma 4 N(O|) nv.) QED ...
View Full Document

{[ snackBarMessage ]}