stat512ch9slidespart4

stat512ch9slidespart4 - Aszmth‘h'c Prefer-Hes O‘F...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Aszmth‘h'c Prefer-Hes O‘F ESfimoCI'UFS ._ Tke, asimt‘hfic Lekavfor a—F an es'Hmad'Dl‘ racers +0 i+s Lekwior as +Le. 50mph size n increases fiwarl co. " Since. am fiS‘HMk‘hf 6 usually dafsz on n) we, may dang-Fe, a. seiuence O'p Suck cs‘h'md'brs ‘97 gm . c1 ConSis+enc¥ —In+1k}five.ly’ we! luau.” like our u‘l'imd'o; +0 “36" closer I +5 -H,\e_ 411-331” Parame. er AS Y\ a 03' - A .. DQ-C{“;'Hor\ ‘. A“ Mar-bf en Qsfimedb" 0‘? 5 ip; ‘FW “7 a > 0’ is (L ConsiS'l'Dt'l' UnLiasealness anal Consismcz —Tk€.nr€m= I": g“ is unkimseal -For 8 «n1 {‘9 Km Vow-(63:0) .Hmen 9“ fr, 0L Consisi‘u‘t’ gs-Hmd'or o-F 9. - Proo'FZ *I-F g“ is masks-Ed -For 9) we. mm, er‘e— an “conuerjes in Fro‘ox‘ailifiu'b 9, or 9“ —F—) 6, M(Law 0'? Large. NumLers>: Slum .H‘d. I"? mrvfln are. {1:11 wi‘HA owl Var :: 6" < 00) +Len t!- is Consishnd' 'For f4 . h A A Theorem: Surrose, eh—P9e an; 6:_L) 6*. Than: (A) én-r 9 +8, en/e: 'Lé 9/6"‘ 0.5 leaf; «.5 959470. (CD is cmd‘inuous 0;} 9’ He,“ “$0 -P-> 3(9). Exmfle?» La ‘15...» ‘09. ml w;+L 261;): ,4 «ml E("l;1)<d>) «ml E(‘/iq) < CD. Show Proo'Fi cam \92, @5317 Skepan -- \ud'ski‘s T‘meoreh (Sfecfij case): I? Un—‘l—sNam) 0L8 n—ND, «ml Wh—P) 1L) 'H‘Exx \va 41% MOM. .—A sim;l&r argumepd' Skow — zercisei I"? huff“ flunk? (0)9), Show You is m ConsiS‘l'e-d’ esfi‘mdvr out 6_ [mar use +Le, Clfl'fini'fion o‘p CDnSiS‘l‘any fl Larjevsaumtle, FroEr-‘Hes 0C MLES ._ ‘f‘rv‘fh (BEQ) amA é is 'Hae . MLE o-F 9) +Len’ «SSumiw-is car-11M Ytjuiqnh CJDNU'HOHQ: «.5 h—boo an; A 'For large Y‘, e A/N(9) 0—32) uLue, .._T'm:S imfln‘es ‘Hnad' OLSSumirgs refit-darkly) ' MLES cure, consRs-l-od') assz-bfimll: normal) Guru! OLSIME'hD'Hckll; flp‘pi'c-fen'f- "" we Um Plug in 6 in Place. a! 9 I.“ “*1 “Wagon new 0'; MA use Sludsky‘s Hem-em Exqmt‘e Ll: YUM) 7“ PoiS 1+ "5 my +» skew Hut +\«e_ MLE 04‘ x is 31:7. New, DeH'k Mfi+laocl '"I-‘F e 36 0va normal MLE 0-? e) “Hm JeH'q meJH'le allows as +6 eler’lVev “Hue. OLSYMP'th—ic disfiikuih‘on a? decL is He HLE 0'? (can! p'FLrevd'imL [e 'Ftrlcj'h: n o“: 9) . Theorem (DEH‘ Me‘l'LMDI Le.+ Y.,...}\/,‘ La {(1 r.V.‘S wi‘HA Po” {37(339). I4 é is +Le MLE 0'? 9) 'H\e,n. (asSuminj r%m[qu'+7 C—DRAI‘HOVLED) -G,r larje n: wkere : Em: Yum?“ Bernoulli. Define 'er. “'03—wclcls“ as 3 (P3 : ,QM , Final HAG: HLE of -H\¢ (OS—octets dud. {+9 OLSYM‘d'b'l'ic dis‘l‘ri lou‘Hon . fl: we— know E=q is {$9. MLE ‘Fbr‘ F, 80: “Exercise“-' er-e a_ laxje-smmfle (l—-m)l007=. CI -For +ke 103—0445. — Eflxuchqzz Y‘)n-)\'n Pois ()0, er‘e 4L («vac—em owe-4, a: new. we): a ...
View Full Document

This note was uploaded on 12/14/2011 for the course STAT 512 taught by Professor Staff during the Summer '10 term at South Carolina.

Page1 / 9

stat512ch9slidespart4 - Aszmth‘h'c Prefer-Hes O‘F...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online