College Algebra Exam Review 31

College Algebra Exam Review 31 - 1.7 MODULAR ARITHMETIC 41...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1.7. MODULAR ARITHMETIC 41 and .OEaŁ C OEbŁ/ C OEcŁ D OEaŁ C .OEbŁ C OEcŁ/: (b) OE0Ł is an identity element for addition; that is, for all OEaŁ 2 Z n , OE0Ł C OEaŁ D OEaŁ: (c) Every element OEaŁ of Z n has an additive inverse OE aŁ , satisfying OEaŁ C OE aŁ D OE0Ł: (d) Multiplication on Z n is commutative and associative; that is, for all OEaŁ;OEbŁ;OEcŁ 2 Z n , OEaŁOEbŁ D OEbŁOEaŁ; and .OEaŁOEbŁ/OEcŁ D OEaŁ.OEbŁOEcŁ/: (e) OE1Ł is an identity for multiplication; that is, for all OEaŁ 2 Z n , OE1ŁOEaŁ D OEaŁ: (f) The distributive law hold; that is, for all OEaŁ;OEbŁ;OEcŁ 2 Z n , OEaŁ.OEbŁ C OEcŁ/ D OEaŁOEbŁ C OEaŁOEcŁ: Multiplication in Z n has features that you might not expect. On the one hand, nonzero elements can sometimes have a zero product. For ex- ample, in Z 6 , OE4ŁOE3Ł D OE12Ł D OE0Ł . We call a nonzero element OEaŁ a zero divisor if there exists a nonzero element OEbŁ such that OEaŁOEbŁ D OE0Ł . Thus, in Z 6 , OE4Ł and OE3Ł...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online