{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

College Algebra Exam Review 74

College Algebra Exam Review 74 - G be a group and suppose e...

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 2 Basic Theory of Groups 2.1. First Results In the previous chapter, we saw many examples of groups and finally ar- rived at a definition, or collection of axioms, for groups. In this section we will try our hand at obtaining some first theorems about groups. For many students, this will be the first experience with constructing proofs concerning an algebraic object described by axioms. I would like to urge both students and instructors to take time with this material and not to go on before mastering it. Our first results concern the uniqueness of the identity element in a group. Proposition 2.1.1. (Uniqueness of the identity).
Image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: G be a group and suppose e and e are both identity elements in G ; that is, for all g 2 G , eg D ge D e g D ge D g . Then e D e . Proof. Since e is an identity element, we have e D ee . And since e is an identity element, we have ee D e . Putting these two equations together gives e D e . n Likewise, inverses in a group are unique : Proposition 2.1.2. (Uniqueness of inverses). Let G be a group and h;g 2 G . If hg D e , then h D g ± 1 . Likewise, if gh D e , then h D g ± 1 . Proof. Assume hg D e . Then h D he D h.gg ± 1 / D .hg/g ± 1 D eg ± 1 D g ± 1 . The proof when gh D e is similar. n 84...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern