College Algebra Exam Review 178

College Algebra Exam Review 178 - 188 3. PRODUCTS OF GROUPS...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 188 3. PRODUCTS OF GROUPS combination of finitely many elements of B . Since S is finite, it is contained in the subgroup geneated by a finite subset B0 of B . But then G D ZS Â ZB0 . So B0 generates G . It follows from the previous lemma that B0 D B . I Proposition 3.5.5. Any two bases of a finitely generated free abelian group have the same cardinality. Proof. Let G be a finitely generated free abelian group. By the previous lemma, any basis of G is finite. If G has a basis with n elements, then G Š Zn , by Proposition 3.5.2. Since Zn and Zm are nonisomorphic if m ¤ n, G cannot have bases of different cardinalities. I Definition 3.5.6. The rank of a finitely generated free abelian group is the cardinality of any basis. Proposition 3.5.7. Every subgroup of Zn can be generated by no more than n elements. Proof. The proof goes by induction on n. We know that every subgroup of Z is cyclic (Proposition 2.2.21), so this takes care of the base case n D 1. Suppose that n > 1 and that the assertion holds for subgroups of Zk for O O k < n. Let F be the subgroup of Zn generated by fe1 ; : : : ; en 1 g; thus, F is a free abelian group of rank n 1. Let N be a subgoup of Zn . By the induction hypothesis, N 0 D N \ F has a generating set with no more than n 1 elements. Let ˛n denote the nt h co-ordinate function on Zn . Then ˛n is a group homomorphism from Zn to Z, and ˛n .N / is a subgroup of Z. If ˛n .N / D f0g, then N D N 0 , so N is generated by no more than n 1 elements. Otherwise, there is a d > 0 such that ˛n .N / D d Z. Choose y 2 N such that ˛n .y/ D d . For every x 2 N , ˛n .x/ D kd for some k 2 Z. Therefore, ˛n .x ky/ D 0, so x ky 2 N 0 . Thus we have x D ky C .x ky/ 2 Zy C N 0 . Since N 0 is generated by no more than n 1 elements, N is generated by no more than n elements. I ...
View Full Document

This note was uploaded on 12/15/2011 for the course MAC 1105 taught by Professor Everage during the Fall '08 term at FSU.

Ask a homework question - tutors are online