Unformatted text preview: 274 6. RINGS Example 6.2.10. The map P i k i x i 7! P i OEk i Łx i is a homomorphism of Z OExŁ to Z n OExŁ . Example 6.2.11. Let R be a commutative ring with multiplicative iden tity element. Then ROEx;yŁ Š ROExŁOEyŁ . To prove this, we use the one– and two–variable substitution principles to produce homomorphisms from ROEx;yŁ to ROExŁOEyŁ and from ROExŁOEyŁ to ROEx;yŁ . We have injective homomorphisms ' 1 W R ! ROExŁ and ' 2 W ROExŁ ! ROExŁOEyŁ . The composition ' D ' 2 ı ' 1 is an injective homomorphism from R into ROExŁŁyŁ . By the two variable substitution principle, there is a unique homomorphism ˚ W ROEx;yŁ ! ROExŁOEyŁ which extends ' and sends x 7! x and y 7! y . Now we produce a map in the other direction. We have an injective ho momorphism W R ! ROEx;yŁ . Applying the one variable substitution principle once gives a homomorphism 1 W ROExŁ ! ROEx;yŁ extending and sending x 7! x . Applying the one variable substitution principle a second time gives a homomorphism...
View
Full
Document
This note was uploaded on 12/15/2011 for the course MAC 1105 taught by Professor Everage during the Fall '08 term at FSU.
 Fall '08
 EVERAGE
 Algebra

Click to edit the document details