College Algebra Exam Review 312

# College Algebra Exam Review 312 - 322 7 FIELD EXTENSIONS...

This preview shows page 1. Sign up to view the full content.

322 7. FIELD EXTENSIONS – FIRST LOOK 7.3. Adjoining Algebraic Elements to a Field The fields in this section are general, not necessarily subfields of the com- plex numbers. A field extension L of a field K is, in particular, a vector space over K . You are asked to check this in the Exercises. It will be helpful to review the definition of a vector space in Section 3.3 Since a field extension L of a field K is a K -vector space, in particular, L has a dimension over K , possibly infinite. The dimension of L as a K - vector space is denoted dim K .L/ (or, sometimes, OEL W .) Dimensions of field extensions have the following multiplicative property: Proposition 7.3.1. If K L M are fields, then dim K .M/ D dim K .L/ dim L .M/: Proof. Suppose that f 1 ; : : : ; r g is a subset of L that is linearly inde- pendent over K , and that f 1 ; : : : ; s g is a subset of M that is linearly independent over L . I claim that f i j W 1 i r; 1 j s g is linearly independent over K . In fact, if 0 D P i;j k ij i j D P j . P i k ij i / j , with k ij 2 K , then linear independence of f j g over L implies that P i k ij i D 0 for all j , and then linear independence of f i g over K implies that k ij D 0 for all i; j , which proves the claim.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern