College Algebra Exam Review 419

College Algebra Exam Review 419 - 9.4. SPLITTING FIELDS AND...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 9.4. SPLITTING FIELDS AND AUTOMORPHISMS (b) 429 jIsoK .M; L/j D ŒAutK .L/ W AutM .L/. Proof. According to Proposition 9.4.2, the map 7! jM is a surjection of AutK .L/ onto IsoK .M; L/. Check that . 1 /jM D . 2 /jM if, and only if, 1 and 2 are in the same left coset of AutM .L/ in AutK .L/. This proves part (a), and part (b) follows. I Proposition 9.4.4. Let K  L be a field extension and let f .x/ 2 KŒx. (a) If 2 AutK .L/, then permutes the roots of f .x/ in L. (b) If L is a splitting field of f .x/, then AutK .L/ acts faithfully on the roots of f in L. Furthermore, the action is transitive on the roots of each irreducible factor of f .x/ in KŒx. Proof. Suppose 2 AutK .L/, f .x/ D k0 C k1 x C C kn x n 2 KŒx; and ˛ is a root of f .x/ in L. Then f . .˛// D k0 C k1 .˛/ C D .k0 C k1 ˛ C C kn .˛ n // C kn ˛ n / D 0: Thus, .˛/ is also a root of f .x/. If A is the set of distinct roots of f .x/ in L, then 7! jA is an action of AutK .L/ on A. If L is a splitting field for f .x/, then, in particular, L D K.A/, so the action of AutK .L/ on A is faithful. Proposition 9.4.1 says that if L is a splitting field for f .x/, then the action is transitive on the roots of each irreducible factor of f .x/. I Definition 9.4.5. If f 2 KŒx, and L is a splitting field of f .x/, then AutK .L/ is called the Galois group of f , or the Galois group of the field extension K  L. We have seen that the Galois group of an irreducible polynomial f is isomorphic to a transitive subgroup of the group of permutations the roots of f in L. At least for small n, it is possible to classify the transitive subgroups of Sn , and thus to list the possible isomorphism classes for the Galois groups of irreducible polynomials of degree n. For n D 3; 4, and 5, we have found all transitive subgroups of Sn , in Exercises 5.1.9 and 5.1.20 and Section 5.5. ...
View Full Document

Ask a homework question - tutors are online