This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Group Project MAP 2302 In this project, well reexamine massspring systems to validate a hunch from the first project, and to discuss the idea of a resonant frequency. Recall that the secondorder equation involving the spring equation is: ( * ) mx 00 + bx + kx = f ( t ) where m,b,k are nonnegative constants representing the mass, friction coefficient, and spring con stant, and f ( t ) is any other external force on the spring that varies with time. 1. Suppose the spring shown in the figure at right, is stretched a distance A from its equilibrium position, and then released. We assume there are no external forces. (a) Divide by m to rewrite the equation ( * ) with new constants = b m and = k m . Then, write the general solution to this homogeneous equation in the case that 2 > 4 , and in the case that 2 < 4 (we will ignore the case that they are equal). (b) Explain with limits, why, in every case, the solution representing the motion of the spring with tend to zero with time. In one of the two cases, one ofwith tend to zero with time....
View
Full
Document
This note was uploaded on 12/15/2011 for the course MAP 2302 taught by Professor Tuncer during the Spring '08 term at University of Florida.
 Spring '08
 TUNCER

Click to edit the document details