{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Exam1 D - STA 3024 Introduction to Statistics 2 Exam 1 Form...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: STA 3024 Introduction to Statistics 2 Exam 1 Form D We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity. Name UFID# Signature Some formulas which you might find useful are Binomial probability mass function: P ( X = x ) = n ! x !( n- x )! p x (1- p ) n- x Confidence Interval for a Population Proportion: ˆ p ± z ( α 2 ) * q ˆ p (1- ˆ p ) n Confidence Interval for Difference between Two Population Proportions from Indepen- dent Random Samples: (ˆ p 1- ˆ p 2 ) ± z α 2 * ( se ) where se = q ˆ p 1 (1- ˆ p 1 ) n 1 + ˆ p 2 (1- ˆ p 2 ) n 2 Confidence Interval for a Population Mean: ¯ x ± t ( α 2 ) * q s 2 n Confidence Interval for Difference between Population Means from Independent Ran- dom Samples: (¯ x 1- ¯ x 2 ) ± t ( α 2 ) * ( se ) where se = q s 2 1 n 1 + s 2 2 n 2 Sample size for estimating a population mean: n = t 2 ( α 2 ) * s 2 m 2 Sample size for estimating a population proportion: n = z 2 ( α 2 ) * ˆ p (1- ˆ p ) m 2 Test Statistic for: Hypothesis Test for a Population Proportion: z = ˆ p- p se where se = q p (1- p ) n . Hypothesis Test for Comparing Two Population Proportions: z = (ˆ p 1- ˆ p 2 )- se with se = r ˆ p (1- ˆ p ) 1 n 1 + 1 n 2 . Hypothesis Test for Comparing Two Population Proportions from Dependent Samples: z = number of count for (1 , 0)- number of count for (0 , 1) √ number of count for (1 , 0)+ number of count for (0 , 1) . Hypothesis Test for a Population Mean: t = ¯ x- μ se where se = q s 2 n . Hypothesis Test for Comparing Two Population Means: t = (¯ x 1- ¯ x 2 )- se with se = q s 2 1 n 1 + s 2 2 n 2 . 1 F Distribution Table Right-Tail Probability = 0.05 df 1 → df 2 ↓ 1 2 3 4 5 6 8 12 24 ∞ 1 161.45 199.50 215.71 224.58 230.16 233.99 238.88 243.91 249.05 254.31 2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50 3 10.13 9.55 9.28 9.12 9.01 8.94 8.85 8.74 8.64 8.53 4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63 5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.37 6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67 7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23 8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93 9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71 10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54 11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40 12 4.75 3.89 3.49 3.26 3.11 3.00 2.85 2.69 2.51 2.30 13 4.67 3.81 3.41 3.18 3.03 2.92 2.77 2.60 2.42 2.21 14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13 15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07 16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01 17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96 18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92 19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88 20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84 21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81 22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78 23 4.28 3.42 3.03 2.80 2.64 2.53 2.372....
View Full Document

{[ snackBarMessage ]}

### Page1 / 9

Exam1 D - STA 3024 Introduction to Statistics 2 Exam 1 Form...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online