{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Exam 1 Form B

# Exam 1 Form B - STA 3024 Introduction to Statistics 2 Exam...

This preview shows pages 1–5. Sign up to view the full content.

STA 3024 Introduction to Statistics 2 Exam 1 Form B We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honesty and integrity. Name UFID# Signature Some formulas which you might find useful are Binomial probability mass function: P ( X = x ) = n ! x !( n - x )! p x (1 - p ) n - x Confidence Interval for a Population Proportion: ˆ p ± z ( α 2 ) * q ˆ p (1 - ˆ p ) n Confidence Interval for Difference between Two Population Proportions from Indepen- dent Random Samples: (ˆ p 1 - ˆ p 2 ) ± z α 2 * ( se ) where se = q ˆ p 1 (1 - ˆ p 1 ) n 1 + ˆ p 2 (1 - ˆ p 2 ) n 2 Confidence Interval for a Population Mean: ¯ x ± t ( α 2 ) * q s 2 n Confidence Interval for Difference between Population Means from Independent Ran- dom Samples: (¯ x 1 - ¯ x 2 ) ± t ( α 2 ) * ( se ) where se = q s 2 1 n 1 + s 2 2 n 2 Sample size for estimating a population mean: n = t 2 ( α 2 ) * s 2 m 2 Sample size for estimating a population proportion: n = z 2 ( α 2 ) * ˆ p (1 - ˆ p ) m 2 Test Statistic for: Hypothesis Test for a Population Proportion: z 0 = ˆ p - p 0 se 0 where se 0 = q p 0 (1 - p 0 ) n . Hypothesis Test for Comparing Two Population Proportions: z 0 = p 1 - ˆ p 2 ) - 0 se 0 with se 0 = r ˆ p (1 - ˆ p ) 1 n 1 + 1 n 2 . Hypothesis Test for Comparing Two Population Proportions from Dependent Samples: z 0 = number of count for (1 , 0) - number of count for (0 , 1) number of count for (1 , 0)+ number of count for (0 , 1) . Hypothesis Test for a Population Mean: t 0 = ¯ x - μ 0 se 0 where se 0 = q s 2 n . Hypothesis Test for Comparing Two Population Means: t 0 = x 1 - ¯ x 2 ) - 0 se 0 with se 0 = q s 2 1 n 1 + s 2 2 n 2 . 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
F Distribution Table Right-Tail Probability = 0.05 df 1 df 2 1 2 3 4 5 6 8 12 24 1 161.45 199.50 215.71 224.58 230.16 233.99 238.88 243.91 249.05 254.31 2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50 3 10.13 9.55 9.28 9.12 9.01 8.94 8.85 8.74 8.64 8.53 4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63 5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.37 6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67 7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23 8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93 9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71 10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54 11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40 12 4.75 3.89 3.49 3.26 3.11 3.00 2.85 2.69 2.51 2.30 13 4.67 3.81 3.41 3.18 3.03 2.92 2.77 2.60 2.42 2.21 14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13 15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07 16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01 17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96 18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92 19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88 20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84 21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81 22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78 23 4.28 3.42 3.03 2.80 2.64 2.53 2.37 2.20 2.01 1.76 24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73 25 4.24 3.39 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71 26 4.23 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69 27 4.21 3.35 2.96 2.73 2.57 2.46 2.31 2.13 1.93 1.67 28 4.20 3.34 2.95 2.71 2.56 2.45 2.29 2.12 1.91 1.65 29 4.18 3.33 2.93 2.70 2.55 2.43 2.28 2.10 1.90 1.64 30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62 40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51 60 4.00 3.15 2.76 2.53 2.37 2.25 2.10 1.92 1.70 1.39 120 3.92 3.07 2.68 2.45 2.29 2.18 2.02 1.83 1.61 1.25 3.84 3.00 2.60 2.37 2.21 2.10 1.94 1.75 1.52 1.00 2
t Distribution Table Confidence Level 80% 90% 95% 98% 99% 99.8% Right-Tail Probability df 0.100 0.050 0.025 0.010 0.005 0.001 1 3.078 6.314 12.706 31.821 63.657 318.309 2 1.886 2.920 4.303 6.965 9.925 22.327 3 1.638 2.353 3.182 4.541 5.841 10.215 4 1.533 2.132 2.776 3.747 4.604 7.173 5 1.476 2.015 2.571 3.365 4.032 5.893 6 1.440 1.943 2.447 3.143 3.707 5.208 7 1.415 1.895 2.365 2.998 3.499 4.785 8 1.397 1.860 2.306 2.896 3.355 4.501 9 1.383 1.833 2.262 2.821 3.250 4.297 10 1.372 1.812 2.228 2.764 3.169 4.144 11 1.363 1.796 2.201 2.718 3.106 4.025 12 1.356 1.782 2.179 2.681 3.055 3.930 13 1.350 1.771 2.160 2.650 3.012 3.852 14 1.345 1.761 2.145 2.624 2.977 3.787 15 1.341 1.753 2.131 2.602 2.947 3.733 16 1.337 1.746 2.120 2.583 2.921 3.686 17 1.333 1.740 2.110 2.567 2.898 3.646 18 1.330 1.734 2.101 2.552 2.878 3.610 19 1.328 1.729 2.093 2.539 2.861 3.579 20 1.325 1.725 2.086 2.528 2.845 3.552 21 1.323 1.721 2.080 2.518 2.831 3.527 22 1.321 1.717 2.074 2.508 2.819 3.505 23 1.319 1.714 2.069 2.500 2.807 3.485 24 1.318 1.711 2.064 2.492 2.797 3.467 25 1.316 1.708 2.060 2.485 2.787 3.450 26 1.315 1.706 2.056 2.479 2.779 3.435 27 1.314 1.703 2.052 2.473 2.771 3.421 28 1.313 1.701 2.048 2.467 2.763 3.408 29 1.311 1.699 2.045 2.462 2.756 3.396 30 1.310 1.697 2.042 2.457 2.750 3.385 40 1.303 1.684 2.021 2.423 2.704 3.307 50 1.299 1.676 2.009 2.403 2.678 3.261 60 1.296 1.671 2.000 2.390 2.660 3.232 80 1.292 1.664 1.990 2.374 2.639 3.195 100 1.290 1.660 1.984 2.364 2.626 3.174 1.282 1.645 1.960 2.326 2.576 3.090 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
z Distribution Table z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 -3.3 .0005 .0005
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}