MultipleRegressionExamples

MultipleRegressionExamples - Example What is the...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
90 80 70 60 50 300 250 200 150 100 50 HT WT Scatterplot of WT vs HT Example – What is the relationship between height and weight for UF students? Data on UF students’ heights and weights collected by STA3024 students. N=1309 Questions about some data – are these heights correct? HT WT F 50.0 111 F 51.0 115 F 51.0 95 F 52.0 113 F 53.0 118 F 53.0 120 F 53.0 120 F 53.0 130 F 54.0 117 F 54.0 130 F 55.0 121 F 55.0 128 F 56.0 120 F 56.0 122 F 56.0 128 F 57.0 103 F 57.0 116 F 57.0 140 M 57.0 165 F 58.0 104 F 58.0 130 F 58.0 90 F 58.0 92 F 58.0 95 F 59.0 104 F 59.0 110 F 59.0 115 F 59.0 125 F 59.0 96 F 59.0 97 F 59.5 145 M 80 160 M 83 227 M 83 227 M 84 255 M 89 296 M 72 60 M 73 105 F 64 270
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
100 50 0 -50 -100 99.99 99 90 50 10 1 0.01 Residual Percent 240 200 160 120 80 150 100 50 0 -50 Fitted Value Residual 125 100 75 50 25 0 -25 -50 120 90 60 30 0 Residual Frequency 1 2 0 9 8 7 6 5 4 3 150 100 50 0 -50 Observation Order Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for WT Regression Analysis: WT versus HT The regression equation is WT = - 279 + 6.41 HT Predictor Coef SE Coef T P Constant -279.01 11.19 -24.92 0.000 HT 6.4088 0.1649 38.86 0.000 S = 24.2205 R-Sq = 54.2% R-Sq(adj) = 54.2% Analysis of Variance Source DF SS MS F P Regression 1 885986 885986 1510.29 0.000 Residual Error 1276 748543 587 Total 1277 1634529 Predicted Values for New Observations New Obs HT Fit SE Fit 95% CI 95% PI 1 65 137.562 0.816 (135.961, 139.163) (90.019, 185.106) 2 60 105.518 1.448 (102.678, 108.359) (57.917, 153.120) 3 76 208.059 1.519 (205.080, 211.038) (160.449, 255.669) 80 75 70 65 60 300 250 200 150 100 HT WT S 24.2205 R-Sq 54.2% R-Sq(adj) 54.2% Fitted Line Plot WT = - 279.0 + 6.409 HT
Background image of page 2
Regression Analysis: WT_F versus HT_F The regression equation is WT_F = - 125 + 3.96 HT_F Predictor Coef SE Coef T P Constant -125.21 17.53 -7.14 0.000 HT_F 3.9614 0.2700 14.67 0.000 S = 19.1292 R-Sq = 24.9% R-Sq(adj) = 24.8% Analysis of Variance Source DF SS MS F P Regression 1 78781 78781 215.29 0.000 Residual Error 650 237852 366 Total 651 316633 Regression Analysis: WT_M versus HT_M The regression equation is WT_M = - 184 + 5.14 HT_M Predictor Coef SE Coef T P Constant -184.21 25.73 -7.16 0.000 HT_M 5.1421 0.3633 14.16 0.000 S = 26.5446 R-Sq = 24.3% R-Sq(adj) = 24.2% Analysis of Variance Source DF SS MS F P Regression 1 141187 141187 200.37 0.000 Residual Error 624 439681 705 Total 625 580868 Regression Analysis: WT versus HT, GENDER_M_1 The regression equation is WT = - 165 + 4.57 HT + 21.0 GENDER_M_1 Predictor Coef SE Coef T P Constant -164.68 14.76 -11.16 0.000 HT 4.5699 0.2271 20.12 0.000 GENDER_M_1 20.963 1.866 11.23 0.000 S = 23.1134 R-Sq = 58.3% R-Sq(adj) = 58.3% Analysis of Variance Source DF SS MS F P Regression 2 953389 476695 892.31 0.000 Residual Error 1275 681140 534 Total 1277 1634529
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Example: Predicting College GPA – data from book Regression Analysis: CGPA versus Height, Gender, etc The regression equation is CGPA = 0.53 + 0.0194 Height + 0.047 Gender - 0.00163 Haircut - 0.042 Job
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/15/2011 for the course STA 3024 taught by Professor Ta during the Spring '08 term at University of Florida.

Page1 / 14

MultipleRegressionExamples - Example What is the...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online