GRII_Paper - An Introduction to Third Generation...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: An Introduction to Third Generation Gravitational Wave Detectors Christopher L. Mueller Dept. of Physics, University of Florida Last Updated: April 20, 2011 Contents 1 Introduction 2 2 The Response of Laser Interferometers to a Gravitational Wave[1] 2 3 Seismic Noise and Gravity Gradient Noise 4 3.1 Seismic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Gravity Gradient Noise[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Quantum Noise[7][8] 7 4.1 Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 Quantum Noise in a Michelson Interferometer w/ Arm Cavities [9][10] . . . . . . . 8 4.3 Beating the SQL: Squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Other Techniques for Quantum Noise Mitigation . . . . . . . . . . . . . . . . . . . 17 5 Thermal Noise 18 5.1 Suspension Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Test Mass Substrate[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Test Mass Coatings[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4 Reducing Thermal Noise: Cryogenic Temperatures . . . . . . . . . . . . . . . . . . 21 5.5 Reducing Thermal Noise: Exotic Beam Shapes[17] . . . . . . . . . . . . . . . . . . 22 6 Detector Topologies 23 6.1 The L-Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2 The Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3 The Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 Expected Sources and Science Reach 26 7.1 Binary Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.2 Isolated Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.3 Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8 Conclusion 28 1 1 Introduction The first generation of interferometric gravitational wave (GW) detectors approximately reached their design sensitivities and thus demonstrated the effectiveness of the working principle. As of this writing many of the first generation of detectors (such as LIGO and VIRGO) have been shut down in preparation for major upgrades with sensitivity improvements of a factor of 10 or so in the detection bandwidth (second generation detectors). According to the current models of GW sources, sensitivity of the advanced detectors is expected to guarantee the detection of signals generated by astrophysical sources within month to a year of coming online. For example, at the nominal sensitivity of the advanced detectors, the expected detection rate of the GW signal generated by a binary system of coalescing neutron stars is about a few tens per year[3]. But apart from extremely rare events, the expected signal-to-noise ration (SNR) of these detections is too...
View Full Document

This note was uploaded on 12/15/2011 for the course PHY 2020 taught by Professor Staff during the Spring '08 term at University of Florida.

Page1 / 30

GRII_Paper - An Introduction to Third Generation...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online