# hw6s - MAT 1330 Fall 2011 Assignment 6 Due November 23 at...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAT 1330, Fall 2011 Assignment 6 Due November 23 at the beginning of class. Late assignments will not be accepted; nor will unstapled assignments. Instructor (circle one): Robert Smith? Jason Levy Olga Vassilieva Catalin Rada DGD (circle one): 1 2 3 4 Student Name Student Number By signing below, you declare that this work was your own and that you have not copied from any other individual or other source. Signature QUESTION 1. Consider the function f 2 m3 - 5m2 + 6x of a single real variable :13. Show that there exist two distinct solutions of f’ = O. WWKOd/L : EN) = 5X°Z~Im+é 625"- W’rsve :grm x : ’QLEF ~ [or-V2? i 6 7 X2, 6 chat/we dwﬁl‘e/e goluzéiuw off/x): WW5“ f”) 2 X5»Sx2+6x= Xfx~a)[>< *3) fat) §(o):§(&):gﬁ3)=o 3090 (swift/rim on [(9.23 W [52.37 M (toll Wat/“We (on/0,2)WZQKSJ) swarm W fzawflswem W ‘ Mzﬁ Q‘éwm’l) W 026} (3‘5) W+Lcwé ' W f’(€&):o (boo, [ab/magma) QUESTION 2. _ I 5‘ a) Fmd the Taylor polynomlal of degree n of f (at) = e”: near a: = 1. )QSQ for“ Polazwwu‘a) 0} Dagmar; WMiW{ 3 gorx we» {Cow Me {Mam/[Wop form: W” l H 2 Pm”); gm) + glofﬂxajr g (agff-al + .e M W ‘1 =1 (a): 704:5 +£ (OJ/X431) lmtsuwaczetg1 a lg :g h‘ )2 emu)” PHKx):g/+e,/)t<—I)+ >f-I +. T... £0!“ x W 1" §(¥>:&x% EHH) b) Approximate x/Eg using the Taylor polynomial obtained in (a) of degree n = 3. ESP 14:3 3 95 ()<): e + efx-” + QUE—[)2 Jr 81:4) : =e+e(m + 2mm gm} . )2 95 i. a 3:4 ﬂéka 2; 33(3): away!) + 01 + i, + a,” [)3 r v Y733039 QUESTION 3. Complete the following steps needed to sketch the graph of the function -£Z+3X~l __.z2-3.z 1 & f(x>=e “if . = 6 a) Determine the domain of f Answer: b) Determine the vertical asymptotes of f 9) Compute the derivative f’ (11:), ﬁnd the critical points of f (2:), and determine the Sign of f’(a3) and behavior of -><1+3X~I 3x—x2~l 6 01 an f’(\$) — Critical point(s): x 2. f) Compute the second derivative f”(\$), determine its Sign7 ﬁnd the inﬂection points and determine the concavity of f Inﬂection points: \$1 = and \$2 2. g) Sketch the graph of f QUESTION 4. Determine the following limits: (3,) lim 1 u 005(3) m—+0 mtan(m) ‘ I ‘ ' (0 {Lug 6”” xtcm/X) 2M5 “we KS 3f 50”” 26”]- App kg eedg hwﬂx) , W\$€ a! IXLao Xtanlx) (XL-(:3 SIIHX . Q N” skit-:2 IOX+ Egg?- OJ * X19? 4...... + l (2/ 7t~6t 90 é b {:90 L C : 6M;‘&‘6 3 £223- :(9 /§“//3 . 1~\$+1n\$ (“HEW . /~x+£m< /»/+6m Q A £50“ “ W < 0,1 .. O kw #003577“) ‘ /7‘W27/' Ii ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 5

hw6s - MAT 1330 Fall 2011 Assignment 6 Due November 23 at...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online