Linear Algebra Solutions 40

# Linear Algebra Solutions 40 - P3 P4 r v  rr r P3  4  4 4...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P3 P4 r v  rr r P3  4  4 4  4 (a)  4 4 4 4 4  4   P1   v v P4 v v ¨¨  v v ¨¨ ¨ v ¨   P1   v   v (b) P2 P2 + = 1 2 1 2 x1 x3 y1 y3 x1 x2 y1 y2 + + x3 x4 y3 y4 x2 x3 y2 y3 + + x4 x1 y4 y1 x3 x4 y3 y4 + x4 x1 y4 y1 , after cancellation. Another possible conﬁguration for the quadrilateral occurs when it is not convex, as in ﬁgure (b). The interior diagonal P2 P4 then gives two triangles P1 P2 P4 and P2 P3 P4 and we can proceed similarly as before. 2. ∆= a+x b+y c+z x+u y+v z+w u+a v+b w+c = a b c x y z x+u y+v z+w + x+u y+v z+w . u+a v+b w+c u+a v+b w+c Now a b c x+u y+v z+w u+a v+b w+c = = abc xyz uvw = a b c a b c x y z u v w + u+a v+b w+c u+a v+b w+c abc xyz abc abc uvw uvw abc uvw abc abc xyz. uvw + + Similarly x y z x+u y+v z+w u+a v+b w+c = xyz uvw abc 43 xyz =− a b c uvw = abc xyz. uvw ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online