Linear Algebra Solutions 50

# Linear Algebra Solutions 50 - 18 Suppose that At = −A...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 18. Suppose that At = −A, that A ∈ Mn×n (F ), where n is odd. Then det At = det(−A) det A = (−1)n det A = − det A. Hence (1 + 1) det A = 0 and consequently det A = 0 if 1 + 1 = 0 in F . 19. 1 r r r 1 1 r r 1 1 1 r 1 1 1 1 C4 → C 4 − C 3 C → C3 − C2 =3 C2 → C 2 − C 1 = 1 0 0 0 r 1−r 0 0 r 0 1−r 0 r 0 0 1−r = (1 − r)3 . 20. 1 a2 − bc a4 1 b2 − ca b4 1 c2 − ab c4 = = = R2 → R2 − R1 R3 → R3 − R1 = 1 a2 − bc a4 2 − ca − a2 + bc b4 − a4 0b 0 c2 − ab − a2 + bc c4 − a4 b2 − ca − a2 + bc b4 − a4 c2 − ab − a2 + bc c4 − a4 (b − a)(b + a) + c(b − a) (b − a)(b + a)(b2 + a2 ) (c − a)(c + a) + b(c − a) (c − a)(c + a)(c2 + a2 ) (b − a)(b + a + c) (b − a)(b + a)(b2 + a2 ) (c − a)(c + a + b) (c − a)(c + a)(c2 + a2 ) = (b − a)(c − a) b + a + c (b + a)(b2 + a2 ) c + a + b (c + a)(c2 + a2 ) = (b − a)(c − a)(a + b + c) 1 (b + a)(b2 + a2 ) . 1 (c + a)(c2 + a2 ) Finally 1 (b + a)(b2 + a2 ) 1 (c + a)(c2 + a2 ) = (c3 + ac2 + ca2 + a3 ) − (b3 + ab2 + ba2 + a3 ) = (c3 − b3 ) + a(c2 − b2 ) + a2 (c − b) = (c − b)(c2 + cb + b2 + a(c + b) + a2 ) = (c − b)(c2 + cb + b2 + ac + ab + a2 ). 53 ...
View Full Document

## This note was uploaded on 12/19/2011 for the course MAS 3105 taught by Professor Dreibelbis during the Fall '10 term at UNF.

Ask a homework question - tutors are online