11. Given:
V
S
,
TV
QS
Prove:
VR
SR
Proof:
12. Given:
EJ
FK
,
JG
KH
EF
GH
Prove:
EJG
FKH
Proof:
13. Given:
MN
PQ
,
M
Q
2
3
Prove:
MLP
QLN
Proof:
14. Given:
Z
is the midpoint of
CT
.
CY
TE
Prove:
YZ
EZ
Proof:
15. Given:
NOM
POR
,
NM
MR
,
PR
MR
,
NM
PR
Prove:
MO
OR
Proof:
Since
NM
MR
and
PR
MR
,
M
and
R
are right angles.
M
R
because all right
angles are congruent. We know that
NOM
POR
and
NM
PR
. By AAS,
NMO
PRO.
MO
OR
by CPCTC.
16. Given:
DL
bisects
BN
.
XLN
XDB
Prove:
LN
DB
Proof:
Since
DL
bisects
BN
,
BX
XN
.
XLN
XDB
.
LXN
DXB
because vertical angles
are congruent.
LXN
DXB
by AAS.
LN
DB
by CPCTC.
B
L
N
X
D
P
N
M
O
R
Given
CY

TE
Midpt. Th.
TZ
CZ
YZ
EZ
Given
Z
is the
midpoint of
CT
.
Alt. int.
are
.
ETC
YCT
TEY
CYE
AAS
CPCTC
EZT
YZC
E
C
T
Y
Z
ASA
MLP
QLN
Given
M
Q
2 3
Given
MN
This is the end of the preview.
Sign up
to
access the rest of the document.
 Fall '10
 Dr.Zhan
 Calculus, PreCalculus, Addition, Trigraph, Seg. Addition Post

Click to edit the document details