Comet Beginnings and End1

Comet Beginnings and End1 - Comet Beginnings and Ends E...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Comet Beginnings and Ends E. Small eddies formed in the disk material, but since the gas and dust particles moved in almost parallel, near-circular orbits, they collided at low velocities. Instead of bouncing off each other or smashing each other, they were able to stick together through electrostatic forces to form planetesimals. The larger planetesimals were able to attract other planetesimals through gravity and increase in size. This process is called accretion. The coalescing particles tended to form bodies rotating in the same direction as the disk revolved. The forming planet eddies had similar rotation rates. This explains items (g) and (h) above. The gravity of the planetesimals tended to divide the solar nebula into ring-shaped zones. This process explains item (i) above. F. More massive planetesimals had stronger gravity and could pull in more of the surrounding solar nebula material. Some planetesimals formed mini-solar nebulae around them which would later form the moons. This explains item (j) above. The Jupiter and
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/15/2011 for the course AST AST1002 taught by Professor Emilyhoward during the Fall '10 term at Broward College.

Ask a homework question - tutors are online