{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Depends on Mass - the density of a representative region of...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Depends on Mass (Curvature of Space) The more mass there is, the more gravity there is to slow down the expansion. Is there enough gravity to halt the expansion and recollapse the universe or not? If there is enough matter (gravity) to recollapse the universe, the universe is ``closed'' . In the examples of curved space above, a closed universe would be shaped like a four-dimensional sphere (finite, but unbounded). Space curves back on itself and time has a beginning and an end. If there is not enough matter, the universe will keep expanding forever. Such a universe is ``open'' . In the examples of curved space, an open universe would be shaped like a four-dimensional saddle (infinite and unbounded). Space curves away from itself and time has no end. Instead of trying to add up all of the mass in the universe, a more reasonable thing to do is to find
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: the density of a representative region of the universe. The density = (mass in the region)/(volume of the region). If the region is truly representative, then the total mass of the universe = the density × the total volume of the universe. If the density is great enough, then the universe is closed. If the density is low enough, then the universe is open. In the popular astronomy magazines, you will probably see the mass density of the universe specified by the symbol `` Ω ''. It is the ratio of the current density to the ``critical density'' described in the next paragraph . If Ω < 1, the universe is open; if Ω > 1, the universe is closed....
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern