Deriving the Geometry of the Universe from the Background Radiation

Deriving the Geometry of the Universe from the Background Radiation

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Deriving the Geometry of the Universe from the Background Radiation An independent way to measure the overall geometry of the universe is to look at the fluctuations in the cosmic microwave background radiation. If the universe is open (saddle-shaped), then lines starting out parallel will diverge (bend) away from each other. This will make distant objects look smaller than they would otherwise, so the ripples in the microwave background will appear largest on the half-degree scale. If the universe is flat, then lines starting out parallel will remain parallel. The ripples in the microwave background will appear largest on the 1-degree scale. If the universe is closed, the lines starting out parallel will eventually converge toward each other and meet. This focussing effect will make distant objects look larger than they would otherwise, so the ripples in the microwave background will appear largest on scales larger than 1-degree. Select the image below to go to the WMAP webpage from which the image came.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/15/2011 for the course AST AST1002 taught by Professor Emilyhoward during the Fall '10 term at Broward College.

Page1 / 2

Deriving the Geometry of the Universe from the Background Radiation

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online