{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Ideal Gas Law - least for the air inside the tire to cool...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Ideal Gas Law Given the three parameters of temperature, density, and pressure, how the gas behaves is described by the equation of state . Most gases will obey a simple equation of state called the ideal gas law in which a doubling of the temperature or a doubling of the (number) density leads to a doubling of the pressure. For example, if you blow twice as much air into a balloon, the gas inside the balloon will push outward with twice as much pressure and the elastic material will expand until a new pressure balance is reached with the outside air pressure. Heating the air inside a hot air balloon increases the pressure inside the fabric enclosure so the balloon fabric that started out laid out all flat on the ground is now puffed into a round shape. (This also explains why your car's manual will tell you to measure the air pressure of your tires when they are cold, so you if you have been driving for a while, you will need to wait several minutes at
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: least for the air inside the tire to cool off to get an accurate tire pressure reading.) Let's continue with the hot air balloon example to make another important point. Once the balloon fabric is all puffed up, raising the temperature further inside the balloon will cause the air inside to flow out of the hole in the bottom of the balloon and density inside will drop. At the same pressure, less dense things will float upward ( Archimedes' principle )---the hot air balloon will rise up off the ground. At a given pressure, cooler air is more dense than hotter air so the cooler air will sink. In an atmosphere, rising warmer air and sinking cooler air can transfer heat energy from a hotter surface to a cooler upper layer of the atmosphere in a process called convection that will be covered in more detail later....
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern