Statistics Homework Solutions 25

Statistics Homework Solutions 25 - 25 SECTION 2.4 01 2 1,...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 25 SECTION 2.4 01 2 1, so c 02 1 02 0 03 1 04 0 1 13 23 43 ¡ ¥ ¢ 33 32 1 ¡ ¢ ¢ ¤¨ ¢¥ ¨ ¡ 32 ¤ 4 01 ¤ ¡ ¡¥ 1x3 ¢¥ ¨ ¨ ¨ ¤¥ ∑4 1 0 x ¤ 0 1x 30 ¢¥ ¨ 2 42 ¤ ¡ ¡ µ2 X 3 32 ¡¥ ¨ ¤ ¦¥ ¨ x 22 ¢ ¤ ¤ ¡ ¡ ¡¥ ¥ ¨ ¡¥ ¡¥ ¤ ¡ ¡ ¡¥ ¤ ¡ ¤ ¡ ¡ ¤ ¡ ¤ ¥ ¤ ¡ ¡ ¡ ¡ 1 1 0 1 12 ¢ 1x2 ¢ 10 ¡¥ ¡¥ ¤ ¨ ∑4 x ∑ 4 1 x µX 2 P X x ∑4 x x 4 Alternatively, σ2 ∑x 1 x2 P X x X ¤ (e) σX 0 1. ¨ x 4 ¨ ¤ X ¢ 1 xP ¢ ∑4 x (d) σ2 X c2 3 ¢ (c) µX 2 2 ¡¥ (b) P X 1, so c 1 ¡ 1 cx ¨ 7. (a) ∑4 x 1 1 ¡ x 0 1 9. (a) 2 3 4 5 p1 x 0.2 0.16 0.128 0.1024 0.0819 0.0655 x 0 1 (b) 2 3 4 5 p2 x 0.4 0.24 0.144 0.0864 0.0518 0.0311 ¥¤ ¥¤ (c) p2 x appears to be the better model. Its probabilities are all fairly close to the proportions of days observed in the data. In contrast, the probabilities of 0 and 1 for p1 x are much smaller than the observed proportions. ¥¤ ¥¤ (d) No, this is not right. The data are a simple random sample, and the model represents the population. Simple random samples generally do not reflect the population exactly. Let A denote an acceptable chip, and U an unacceptable one. (a) If the first two chips are both acceptable, then Y ¡ 11. 2. This is the smallest possible value. ...
View Full Document

Ask a homework question - tutors are online