{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

06+Ch04a - Chapter4a ThisWeek Lectures Today Hawkes...

Info icon This preview shows pages 1–17. Sign up to view the full content.

View Full Document Right Arrow Icon
BIT 2405 Quantitative Methods I Chapter 4a
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This Week Lectures Hawkes Today
Image of page 2
Next Week Lectures Hawkes Hawkes 3.X due at 11:59 pm  Monday Night , 2/7.
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
I posted StandardDeckOfCards.pdf  in the Hawkes Help folder on  Scholar. This may help you with your Hawkes  Certificates that involve using a deck of  playing cards. Show you the cards and what are “Face Cards” Suits  And such You will need to understand the structure to figure  out probabilities.
Image of page 4
Questions?
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Chapter 4  Introduction to Probability Today Next Time KEY Lecture # Chapter TEXT Quantitative Methods I, Anderson, Sweeney & Williams Hawkes Learning Systems: Statistics HLS Secti on Topic Sectio n Topic 06 Ch04a.ppt 07 Ch04b.ppt 4.1 Experiments, Counting Rules, and Assigning Probabilities 4.1 Classical Probability 4.2 Events and their Probabilities 4.2 Probability Rules 4.3 Some Basic Relationships of Probability 4.3 Counting Rules 4.4 Conditional Probability 4.4 Additional Counting Techniques (Complete 4.1, 4.2, & 4.3 FIRST)
Image of page 6
We’ve Been Looking at Elements In Reality by  Measuring Characteristics and then Characterizing  the Datasets. Reality ?
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Now We Will Consider a Different WAY to Look at  Some Things in Reality. Reality Reality
Image of page 8
Things That Can Be Viewed as “Games of Chance”  with a number of Possible “Random” Outcomes. Reality PROBABILITY
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Probability as a Numerical Measure of the Likelihood of Occurrence 0 1 .5 Increasing Likelihood of Occurrence Probability: The event is very unlikely to occur. The occurrence of the event is   just as likely as it is unlikely. The event is almost certain to occur.
Image of page 10
An Experiment and Its Sample Space  An experiment   is any process that generates  well-defined outcomes.  The sample space  for an experiment is the set of  all experimental outcomes.  An experimental outcome is also called a sample  point .
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
We look at a “situation” in reality and see if we  can look at it as an “experiment” to gain  insight.
Image of page 12
Joe Tailgates at the VT home games. What’s the likelihood Joe drinks alcohol at the  next tailgate?
Image of page 13

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
If Joe ALWAYS drinks at tailgates, then it’s  not an “experiment” because there is only  ONE outcome. BTW: If Joe NEVER drinks at tailgates, then  it’s also not an “experiment.”
Image of page 14
If Joe drinks sometimes and other times he  doesn’t drink at tailgates, then we can view  this as an experiment . There are 2 sample points in the sample space:  1. Joe drinks & 2. Joe doesn’t drink.
Image of page 15

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
An Experiment and Its Sample Space Experiment:  Coin Toss Sample Space: S = {Heads, Tails} Sample Points (Experimental Outcomes): Let  n   ≡ number of sample points n = 2 Count  all the possible Outcomes.
Image of page 16
Image of page 17
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern