408_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

# 408_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 05Ch05.qxd 9/24/08 402 4:59 AM Page 402 CHAPTER 5 Stresses in Beams (Basic Topics) Solution 5.5-14 Circular core From Appendix D, Cases 9 and 15: 4 Iy b radians a 4 Iy pd 64 4 d 2 r aa 2 pr 4 r 4 a dp a 32 2 ab pd 4 64 d4 p a 32 2 b d4 p a 32 2 d4 (4 b 128 b+ 1 sin 4 b b 4 sin4 b ) MAXIMUM BENDING STRESS r cos b b sin b cos b + 2 sin b cos3 b b b dp a 32 2 r4 pd 4 64 b 4 pd 64 2ab + r2 r sin b radians a 4 p 2 3 b smax 2 (sin b cos b )(1 b 2 cos b ) b smax 1 a sin 2 b b ( 2 cos 2 b ) b For b smax Mc Iy c 64M sin b 3 d (4 b ; sin 4 b ) (8p 13 + 9)d 60° p/3 rad: 576M 10.96 3 P Problem 5.5-15 A simple beam AB of span length L 24 ft is subjected to two wheel loads acting at distance d = 5 ft apart (see figure). Each wheel transmits a load P = 3.0 k, and the carriage may occupy any position on the beam. Determine the maximum bending stress smax due to the wheel loads if the beam is an I-beam having section modulus S 16.2 in.3 d sin b 2 r sin b d M ; d3 P A B C L Solution 5.5-15 Wheel loads on a beam Substitute x into the equation for M: Mmax L 24 ft d 5 ft P 3k S 288 in. 60 in. P L L x+ M RA x P (2L x L dM dx P (2L L d P (L L x dx 4x) d2 b 2 MAXIMUM BENDING STRESS smax 3 16.2 in. Mmax S P aL 2LS d2 b 2 ; Substitute numerical values: MAXIMUM BENDING MOMENT RA P aL 2L d) P (2L L 2x) smax 3k 2(288 in.)(16.2 in.3) 21.4 ksi 2x2) 0x d L 2 d 4 ; (288 in. 30 in.)2 ...
View Full Document

## This note was uploaded on 12/22/2011 for the course MEEG 310 taught by Professor Staff during the Fall '11 term at University of Delaware.

Ask a homework question - tutors are online