442_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

442_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 05Ch05.qxd 436 9/24/08 4:59 AM Page 436 CHAPTER 5 Stresses in Beams (Basic Topics) S(x) M(x) s(x) 2 x bd 2L d s(x) dx 6 Px + M0 + 1 2 a x x q0 b x L 3 0 d s(x) dx b c hA a 1 + c 124PL then solve for xmax L 2 (24PxL + 24M0L bhA2 (2L + x)2 M(x) S(x) 4x3q0) * 1500 12x2 q02 L bhA2 (2L + x)3 d 0 Simplifying 12PL2 + 6PxL + 6x2 q0L + x3 q0 + 12M0 L M(x) 1000 (in.-lb) 0 Solve for xmax xmax ; 4.642 in. Max. stress & stress at B 500 0 10 x (in.) 20 s (xmax) smax 1400 smax 1235 psi sB s (20) ; sB 867 psi FIND MAX. MOMENT AND STRESS AT LOCATION OF MAX. 1200 MOMENT 1000 d M(x) dx σ (x) (psi) xm 800 0 10 x (in.) Px + M0 s(x) s(x) q0 x3 6L b c hA a 1 + 2 x bd 2L 41 6 6PxL 6 M0 L + x3 q02 L * bhA2 (2L + x)2 20 sm smax sm A q0 d a Px + M0 dx s(xm) sm 0 P (2L) 1.215 xm ; 16.33 in. 1017 psi q0x3 b 6L 0 ...
View Full Document

This note was uploaded on 12/22/2011 for the course MEEG 310 taught by Professor Staff during the Fall '11 term at University of Delaware.

Ask a homework question - tutors are online