689_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

689_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 08Ch08.qxd 9/18/08 11:06 AM Page 683 SECTION 8.5 Combined Loadings Solution 8.5-8 683 Torsional pendulum sx st txy L 2.0 m d 60 kg G 46.839 MPa 80 fmax (MPa) 4.0 mm M 46.839 MPa 0 sy W A sx TENSILE STRESS 80 GPa sallow A W tallow 100 MPa pd 4 50 MPa 2 12.5664 mm2 PRINCIPAL STRESSES 2 Mg (60 kg)(9.81 m/s ) 588.6 N A 23.420 ; 1123.42022 + 6400f2 max sx + sy s1, 2 ; 2 s1, 2 a sy sx 2 2 b + t2 xy ( MPa) Note that s1 is positive and s2 is negative. Therefore, the maximum in-plane shear stress is greater than the maximum out-of-plane shear stress. 23.420 ; 1123.42022 + 6400f2 max MAXIMUM ANGLE OF ROTATION BASED ON TENSILE STRESS s1 ‹ 100 MPa (100 TORQUE: T L (EQ. 3-15) 23.420)2 5316 GIp fmax 6400f2 max Tr Ip GIpfmax t a t 80 fmax L ba r b IP Units: t (EQ. 3-11) tmax Gr fmax L MPa (80 * 106 Pa)fmax fmax A 100 MPa 123.42022 + 6400f2 max fmax 0.9114 rad 52.2° 1(23.420)2 + 6400f2 max MAXIMUM ANGLE OF ROTATION BASED ON IN-PLANE SHEAR STRESS SHEAR STRESS: t sallow maximum tensile stress radians a sx 2 sy 2 b + t2 xy 1(23.420)2 + 6400f2 max tallow 50 MPa (50)2 (23.420)2 + 6400f2 max Solving, fmax 50 0.5522 rad 31.6° SHEAR STRESS GOVERNS fmax 0.552 rad 31.6° ; ...
View Full Document

This note was uploaded on 12/22/2011 for the course MEEG 310 taught by Professor Staff during the Fall '11 term at University of Delaware.

Ask a homework question - tutors are online