717_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

717_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
SECTION 9.3 Deflection Formulas 711 Problem 9.3-3 What is the span length L of a uniformly loaded simple beam of wide-flange cross section (see figure) if the maximum bending stress is 12,000 psi, the maximum deflection is 0.1 in., the height of the beam is 12 in., and the modulus of elasticity is 30 ± 10 6 psi? (Use the formulas of Example 9-1.) Solution 9.3-3 Simple beam (uniform load) s ² s max ² 12,000 psi d ² d max ² 0.1 in. h ² 12 in. E ² 30 ± 10 6 psi Calculate the span length L . Maximum bending moment: M ² qL 2 8 s ² qL 2 h 16 I (2) Flexure formula: s ² Mc I ² Mh 2 I Eq. (9- 18): d ² d max ² 5 qL 4 384 EI or q ² 384 EI d 5 L 4 (1) (3) Equate (1) and (2) and solve for L : Substitute numerical values: L ² 120 in. ² 10 ft ; L 2 ² 24(30 * 10 6 psi)(12 in.)(0.1 in.) 5(12,000 psi) ² 14,400 in. 2 L 2 ² 24 Eh d 5 s L ² A 24 Eh d 5 s ; Solve Eq. (2) for q : q ² 16 I s L 2 h Problem 9.3-4 Calculate the maximum deflection d max of a uniformly loaded simple beam (see figure) if the span length L ² 2.0 m, the intensity of the uniform load q ² 2.0 kN/m, and the maximum bending stress s ² 60 MPa. The cross section of the beam is square, and the material is aluminum
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: having modulus of elasticity E 70 GPa. (Use the formulas of Example 9-1.) q = 2.0 kN/m L = 2.0 m Solution 9.3-4 Simple beam (uniform load) L 2.0 m q 2.0 kN/m s s max 60 MPa E 70 GPa C ROSS SECTION (square; b width) (2) (3) Substitute for S : s 3 qL 2 4 b 3 Flexure formula with M qL 2 8 : s M S qL 2 8 S Substitute for I : d 5 qL 4 32 Eb 4 Maximum deflection (Eq. 9-18): d 5 qL 4 384 EI (1) I b 4 12 S b 3 6 (4) (The term in parentheses is nondimensional.) Substitute numerical values: d max 10(80) 1/3 2.8 mm 15.4 mm ; a 4 L s 3 q b 1/3 c 4(2.0 m)(60 MPa) 3(2000 N/m) d 1/3 10(80) 1/3 5 L s 24 E 5(2.0 m)(60 MPa) 24(70 GPa) 1 2800 m 1 2.8 mm Substitute b into Eq. (2): d max 5 L s 24 E a 4 L s 3 q b 1/3 ; Solve for b 3 : b 3 3 qL 2 4 s 09Ch09.qxd 9/27/08 1:31 PM Page 711...
View Full Document

This note was uploaded on 12/22/2011 for the course MEEG 310 taught by Professor Staff during the Fall '11 term at University of Delaware.

Ask a homework question - tutors are online