733_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

733_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 09Ch09.qxd 9/27/08 1:31 PM Page 727 SECTION 9.4 Deflections by Integration of the Shear Force and Load Equations 727 Solution 9.4-8 q0 L2 x q0 x4 q0 x3 + + C3 + 6 24 L 3 LOAD EQUATION E I –– q q0 + EI ¿ q0 x L q0 x + EI –¿ B.C. n (0) V(0) q0 x + C1 2L 0 + C3 x + C4 C1 0 B.C. EI – n (0) 0 C3 B.C. E I –¿ q0 x2 q0 x + 2L n(L) 0 C4 q0 x3 q0 x2 + + C2 2 6L B.C. n (L) M(L) 0 q0 1 120 EIL (x) q0 L2 3 C2 0 2 q0 L4 15 5 x4 L + x5 16 L52 + 20L3 x2 q0 x2 q0 x3 q0 L2 + + 2 6L 3 EI – q0 x5 q0 L2 x2 q0 x4 + + 24 120 L 6 EI 2 ; MAXIMUM DEFLECTION dmax (0) Problem 9.4-9 Derive the equations of the deflection curve for beam ABC, with guided support at A and roller support at B, supporting a uniform load of intensity q acting on the over-hang portion of the beam (see figure). Also, determine deflection dC and angle of rotation uC. Use the fourth-order differential equation of the deflection curve (the load equation). 2 q0 L4 15EI ; y MA q x A L B L/2 C RB Solution 9.4-9 LOAD EQUATION E I –– B.C. n (0) 0 (0 … x … L) q 0 C3 qL x + C4 16 EI E I –¿ C1 (0 … x … L) EI – C1 x + C2 (0 … x … L) B.C. n (0) V(0) 0 C1 – (0) M(0) EI – q L2 8 EI ¿ q L2x + C3 8 qL 8 B.C. 0 2 B.C. 0 22 C2 q L2 8 n(L) (x) 0 C4 qL2 2 1x 16 E I q L4 16 L22 (0 … x … L) LOAD EQUATION EI –– q aL … x … 3L b 2 ; ...
View Full Document

This note was uploaded on 12/22/2011 for the course MEEG 310 taught by Professor Staff during the Fall '11 term at University of Delaware.

Ask a homework question - tutors are online