763_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

763_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 09Ch09.qxd 9/27/08 1:35 PM Page 757 SECTION 9.7 Nonprismatic Beams From (1), (2), and (3) C1 0 7 ML 16 0 C3 5 M L2 48 0 C4 ; Therefore (x) M0x3 12EIL a0 … x … (x) M0 ( 48EIL 24x2L + 8x3 + 21L2x L b 2 5L3) a L … x … Lb 2 DEFLECTION AT A AND B RA M0 L dA RA k1 dA 0.88 in. M0 L RB RB k2 dB dB Downward 1.36 in. Upward DEFLECTION AT POINT C L 1 a b + (dA + dB) 2 2 dC L3 M0 a b 2 dC + 12EIL dC 1 (d + dB) 2A ; 0.31 in. Upward (b) BENDING-MOMENT EQUATIONS-UNIFORM LOAD q qLx qx2 L 2EI – M a0 … x … b 2 2 2 2 3 qLx qx L 2EI ¿ + C1 a 0 … x … b 4 6 2 qLx3 12 2EI B.C. (0) 0 qx4 + C 1x + C 2 24 C2 qx2 2 0 a a0 … x … 2EI L b 2 qLx3 12 L … x … Lb 2 EI – qLx 2 EI ¿ qLx2 4 qx3 6 EI qLx3 12 qx4 + C3x + C4 24 C3 a L … x … Lb 2 a L … x … Lb 2 qx4 + C1x 24 a0 … x … L b 2 757 ...
View Full Document

This note was uploaded on 12/22/2011 for the course MEEG 310 taught by Professor Staff during the Fall '11 term at University of Delaware.

Ask a homework question - tutors are online