810_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

810_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 10Ch10.qxd 804 9/27/08 7:29 AM Page 804 CHAPTER 10 Statically Indeterminate Beams B.C. B.C. B.C. 1 ¿ (0) 0 2 (0) ‹ C3 0 3 ¿ (L) B.C. 1 v 2L 4 q0 a b p ‹ C4 p4EI c q0 a L + C2L 2 4 (L) 2L 3 b p (6) 2L 4 q0 a b p (7) C2 q EIv –¿ p) q0 a x q0 L p4 EIv – p) p4 q0 a SHEAR FORCE (EQ. 2) 48(4 p) 2L px q0 sin a b + q0 L 4 p 2L p + C1 REACTIONS RA RB V(0) p) 48(4 4 p a V(L) ; q0 L b q0 L + C2 MB q0 a 2 4 p 2L b+ p 32(p 3L2 3) 4 p x3 6 (1) b + C1 (2) x4 12L2 x5 60L2 x4 24 b + C1x + C2 b (4) x3 b + C1 6 360L2 x2 + C3x + C4 2 (5) 16(6 q0 L2 p) p4 q0 L2 ; B.C. 1 ¿ (0) 0 ‹ C3 0 B.C. ; 48(4 p) 2L 4 px b cos a b + p 2L p4 16(6 p) x3 * q0 L 4 6 p q0 a 2 2 (0) 0 ‹ C4 0 3 ¿ (L) 0 ; ‹ C1L + 2C2 B.C. 4 v( L) 3 q L2 10 0 (6) 7 q L2 30 0 (7) 0 Solve Eqs. (6) and (7): C1 13 qL 30 0 C2 1 q L2 15 0 SHEAR FORCE (EQ. 2) 4 x 2L + q0 a b , or p 2 (3) x6 DEFLECTION CURVE (EQ. 5) * q0 L2 b L2 x2 2 ‹ C1L + 3C2 EIv x2 B.C. p) 48(4 2 p From equilibrium MA ; b x2 + C2 x + C3 2 q0 a EIv x3 q0 a M q0 L2 EIv ¿ V L2 q0 a 1 EIv –– Solve Eqs. (6) and (7): 16(6 x2 q0 a1 (b) Loading q p) q0 L x 3 DIFFERENTIAL EQUATION L L2 ‹ C1 + C2 6 2 48(4 px b + 8(4 2L p) q0 L2x 2 + 16 q0 L4 d 8(6 0 3 C1 16 q0 L4 cos a 0 2 ‹ C1 0 V q0 a x x3 2 3L b+ 13 qL 30 0 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online