811_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

# 811_Mechanics SolutionInstructors_Sol.Manual-Mechanics_Materials_7e.book_Gere_light.1

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 10Ch10.qxd 9/27/08 7:29 AM Page 805 805 SECTION 10.3 Differential Equations of the Deflection Curve DEFLECTION CURVE (EQ. 5) REACTIONS RA 13 qL 30 0 V(0) RB ; 7 qL 30 0 V(L) x q0 a 2 MA 4 13 b+ q Lx 30 0 12L2 x 1 q0 L2 (counter-clockwise) 15 MA 1 q L2 (clockwise) 20 0 MB x4 24 x6 13 x3 q0 L b+ 30 6 360L2 1 x2 q0 L2 , or 15 2 ; From equilibrium 2 q0 a EIv v 1 q L2 15 0 q0 360L2EI [x 6 + 26L3x 3 15L2x 4 12L4x 2] ; ; ; Problem 10.3-9 A fixed-end beam of length L is loaded by triangularly q0 y distributed load of maximum intensity q0 at B. Use the fourth-order differential equation of the deflection curve to solve for reactions at A and B and also the equation of the deflection curve. MB A MA L x B RB RA Solution 10.3-9 Triangular load q q0 x L B.C. B.C. DIFFERENTIAL EQUATION EIv –– EIv –¿ q0 x L (1) x2 + C1 2L (2) q EIv – EIv ¿ q0 x3 q0 + C1x + C2 6L (3) x4 x2 + C1 + C2x + C3 24L 2 (4) M q0 5 3 4 (L) 0 0 ‹ C1L + 2C2 ‹ C1L + 3C2 Solve Eqs. (6) and (7): C1 C2 3 q0 L 20 1 q L2 30 0 SHEAR FORCE (EQ. 2) V 2 x x x + C1 + C2 + C3x + C4 120L 6 2 3 ¿ (L) (5) q0 x2 3 + qL 2L 20 0 EIv q0 B.C. 1 ¿ (0) 0 ‹ C3 0 REACTIONS B.C. 2 v(0) 0 ‹ C4 0 RA V(0) 3 qL 20 0 ; q0 L2 12 q0 L2 20 (6) (7) ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online