HW Solutions Stat 42

HW Solutions Stat 42 - H0 : E cfw_Y = [1 + exp(0 1 X )]1 ,...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
H 0 : E { Y } = [1 + exp( β 0 β 1 X )] 1 , H a : E { Y } 6 = [1 + exp( β 0 β 1 X )] 1 . X 2 =12 . 284, χ 2 ( . 99; 4) = 13 . 28. If X 2 13 . 28 conclude H 0 , otherwise H a . Conclude H 0 . 14.25. a. Class j ˆ π 0 Interval Midpoint n j p j 1 1 . 1 - under . 4 . 75 10 . 3 2 . 4 - under . 6 . 10 10 . 6 3 . 6 - under 1 . 51 . 05 10 . 7 b. i : 123 ··· 28 29 30 r SP i : . 6233 1 . 7905 . 6233 . 6099 . 5754 2 . 0347 14.28. a. j : 12345678 O j 1 : 0102182 1 0 E j 1 : . 2 . . 01 . 52 . 43 . 44 . 71 0 . 3 O j 0 : 1 91 92 81 21 0 E j 0 :1 8 . 9 . 9 . 8 . 7 . 61 6 . 5 . 39 . 7 b. H 0 : E { Y } = [1 + exp( β 0 β 1 X 1 β 2 X 2 β 3 X 3 )] 1 , H a : E { Y } 6 = [1 + exp( β 0 β 1 X 1 β 2 X 2 β 3 X 3 )] 1 . X 2 . 116, χ 2 ( . 95; 6) = 12 . 59. If X 2 12 . 59, conclude H 0 , otherwise conclude H a . Conclude H 0 . P -value = . 0594. c. i 2 3 157 158 159 dev i : . 5460 . 5137 1 . 1526 . 4248 . 8679 1 . 6745 14.29 a. i : 28 29 30 h ii : . 1040 . 1040 . 1040 . 0946 . 1017 . 1017
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/21/2011 for the course STA 2014 taught by Professor Davehatley during the Fall '11 term at UNF.

Ask a homework question - tutors are online