{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HW Solutions Stat 42

# HW Solutions Stat 42 - H0 E cfw_Y =[1 exp(0 1 X]1 Ha E...

This preview shows page 1. Sign up to view the full content.

H 0 : E { Y } = [1 + exp( β 0 β 1 X )] 1 , H a : E { Y } = [1 + exp( β 0 β 1 X )] 1 . X 2 = 12 . 284, χ 2 ( . 99; 4) = 13 . 28. If X 2 13 . 28 conclude H 0 , otherwise H a . Conclude H 0 . 14.25. a. Class j ˆ π Interval Midpoint n j p j 1 1 . 1 - under . 4 . 75 10 . 3 2 . 4 - under . 6 . 10 10 . 6 3 . 6 - under 1 . 5 1 . 05 10 . 7 b. i : 1 2 3 · · · 28 29 30 r SP i : . 6233 1 . 7905 . 6233 · · · . 6099 . 5754 2 . 0347 14.28. a. j : 1 2 3 4 5 6 7 8 O j 1 : 0 1 0 2 1 8 2 10 E j 1 : . 2 . 5 1 . 0 1 . 5 2 . 4 3 . 4 4 . 7 10 . 3 O j 0 : 19 19 20 18 19 12 18 10 E j 0 : 18 . 8 19 . 5 19 . 0 18 . 5 17 . 6 16 . 6 15 . 3 9 . 7 b. H 0 : E { Y } = [1 + exp( β 0 β 1 X 1 β 2 X 2 β 3 X 3 )] 1 , H a : E { Y } = [1 + exp( β 0 β 1 X 1 β 2 X 2 β 3 X 3 )] 1 . X 2 = 12 . 116, χ 2 ( . 95; 6) = 12 . 59. If X 2 12 . 59, conclude H 0 , otherwise conclude H a . Conclude H 0 . P -value = . 0594. c. i : 1 2 3 · · · 157 158 159 dev i : . 5460 . 5137 1 . 1526 · · · . 4248 . 8679 1 . 6745 14.29 a. i : 1 2 3 · · · 28 29 30 h ii
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}