HW Solutions Stat 55

# HW Solutions Stat 55 - H otherwise H a Conclude H d H β 11...

This preview shows page 1. Sign up to view the full content.

ij =15 j =16 j =17 j =18 j =19 j =20 1 . 0010 . 0390 . 1690 . 0210 . 1010 . 2810 2 . 1393 . 1807 . 0507 . 2007 . 1107 . 1007 3 . 0040 . 0260 . 0140 . 0460 . 2540 . 1560 4 . 1168 . 1768 . 1468 . 0568 . 0868 . 1632 5 . 3069 . 1331 . 0931 . 0331 . 2431 . 2869 6 . 1902 . 0002 . 2998 . 2198 . 2202 . 0802 c. H 0 : E { Y } = β 0 + β 1 x + β 11 x 2 , H a : E { Y } 6 = β 0 + β 1 x + β 11 x 2 . SSPE =3 . 5306, SSLF = . 0408, F =( . 0408 / 3) ÷ (3 . 5306 / 114) = . 439 ,F ( . 99; 3 , 114) = 3 . 96. If F 3 . 96 conclude H
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: H , otherwise H a . Conclude H . d. H : β 11 = 0, H a : β 11 6 = 0. s { b 11 } = . 00525, t ∗ = . 01016 /. 00525 = 1 . 935 , t ( . 995; 117) = 2 . 619. If | t ∗ | ≤ 2 . 619 conclude H , otherwise H a . Conclude H . 17-4...
View Full Document

## This note was uploaded on 12/21/2011 for the course STA 2014 taught by Professor Davehatley during the Fall '11 term at UNF.

Ask a homework question - tutors are online