Chem Differential Eq HW Solutions Fall 2011 138

Chem Differential Eq HW Solutions Fall 2011 138 - 138...

This preview shows page 1. Sign up to view the full content.

138 Chapter 8 The Laplace and Hankel Transforms with Applications Laplace transformt the equation and use the given initial conditions: L ( y ±± )+ L ( y )= L ( - cos τ ) s 2 Y - sy (0) - y ± (0) + Y = - s s 2 +1 Y ( s 2 +1) = = - s s 2 Y = - s ( s 2 +1) 2 = 1 2 d ds 1 s 2 y = - 1 2 τ sin τ = - 1 2 ( t - π ) sin( t - π ) = 1 2 ( t - π ) sin t 45. Laplace transform the equation y ±± - y ± - 6 y = e t cos t and use the initial conditions y (0) = 0 ,y ± (0) = 1: s 2 Y - sy (0) - y ± (0) - sY + y (0) - 6 Y = s - 1 ( s - 1) 2 ; Y ( s 2 - s - 6) = 1 + s - 1 ( s - 1) 2 ; So Y = 1 ( s - 3)( s +2) + 1 ( s - 3)( s s - 1 ( s - 1) 2 ; Y = - 1 5( s + 1 5( s - 3) + 1 ( s - 3)( s s - 1 s 2 - 2 s +2 = - 1 5( s + 1 5( s - 3) + 1 ( s + 2)( s 2 - 2 s + 2 ( s - 3)( s + 2)( s 2 - 2 s We now Fnd the partial frctions decomposition of the last term on the right. Write
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/22/2011 for the course MAP 3305 taught by Professor Stuartchalk during the Fall '11 term at UNF.

Ask a homework question - tutors are online