Chem Differential Eq HW Solutions Fall 2011 183

Chem Differential Eq HW Solutions Fall 2011 183 - Section...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Section A.3 Linear Ordinary Differential Equations with Nonconstant Coefficients A183 17. Put the equation in standard form: xy ±± +2(1 - x ) y ± +( x - 2) y =0 ,y 1 = e x ; y ±± + 2(1 - x ) x y ± + x - 2 x y ,p ( x )= 2 x - 2; ± p ( x ) dx =2 l n x - 2 x e - ± p ( x ) dx = e - 2ln x +2 x = e 2 x x 2 ; y 2 = e x ± e 2 x x 2 e 2 x dx = e x ± 1 x 2 dx = - e x x . Hence the general solution y = c 1 e x + c 2 e x x . 21. y ±± - 4 y ± +3 y = e - x . λ 2 - 4 λ +3=0 ( λ - 1)( λ - 3) = 0 λ =1or λ =3 . Linearly independent solutions of the homogeneous equation: y 1 = e x and y 2 = e 3 x . Wronskian: W ( x ² ² ² ² ² e x e 3 x e x 3 e 3 x ² ² ² ² ² e 4 x - e 4 x e 4 x . We now apply the variation of parameters formula with g ( x e - x ; y p = y 1 ± - y 2 g ( x ) W ( x ) dx + y 2 ± y 1 g ( x ) W ( x ) dx = e x ±
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online