Chem Differential Eq HW Solutions Fall 2011 185

Chem Differential Eq HW Solutions Fall 2011 185 - Section...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Section A.3 Linear Ordinary Differential Equations with Nonconstant Coefficients A185 Hence the general solution y = x - 3 [ c 1 cos(2 ln x )+ c 2 sin(2 ln x )] . 41. We have y 2 = y 1 ± e - ± p ( x ) dx y 2 1 dx. Using the product rule for differentiation y ± 2 = y ± 1 ± e - ± p ( x ) dx y 2 1 dx + y 1 e - ± p ( x ) dx y 2 1 = y ± 1 ± e - ± p ( x ) dx y 2 1 dx + e - ± p ( x ) dx y 1 . So W ( y 1 ,y 2 )= ² ² ² ² ² ² y 1 y 1 ³ e - ± p ( x ) dx y 2 1 dx y ± 1 y ± 1 ³ e - ± p ( x ) dx y 2 1 dx + e - ± p ( x ) dx y 1 ² ² ² ² ² ² = y 1 y ± 1 ± e - ± p ( x ) dx y 2 1 dx + e - ± p ( x ) dx - y ± 1 y 1 ± e - ± p ( x ) dx y 2 1 dx = e - ± p ( x ) dx > 0 . This also follows from Abel’s formula, (4), Section A.1. 45. (a) From Abel’s formula (Theorem 2, Section A.1), the Wronskian is y 1 y ± 2 - y ± 1 y 2 = Ce -∫ p ( x ) dx , where y 1 and y 2 are any two solution of (2). (b) Given y 1 , set C = 1 in (a) y 1 y ± 2 - y ± 1 y 2 = e p ( x ) dx . This is a ±rst-order differential equation in
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online