This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: b) From your FBDs in a), derive the three differential equations of motion for the system. c) Determine the transfer function G 3 s ( ) = X 3 s ( ) / X C s ( ) for an input of x C t ( ) and an output of x 3 t ( ) . d) Determine the input/output differential equation of motion for x 3 t ( ) . e) What is the order of this system? x 1 smooth k C m smooth B A x 2 x 3 x C t ( ) c k k m D Problem No. 3 (30%) For the systems a)  f) below with output y t ( ) and input u t ( ) : develop the transfer function G s ( ) = Y s ( ) / U s ( ) . determine the poles of the transfer function. Locate (sketch) these poles in the complex plane. classify the systems as either: stable , unstable or marginally stable . a) !! y + 6 ! y + 25 y = 5 ! u t ( ) b) !! y ! 6 ! y + 25 y = 5 ! u t ( ) + 10 u t ( ) c) !! y + 6 ! y ! 25 y = ! 5 ! u t ( ) + 10 u t ( ) d) !! y ! 6 ! y ! 25 y = 10 u t ( ) e) !! y + 25 y = 3 u t ( ) f) !! y + 6 ! y = 3 u t ( )...
View Full
Document
 Fall '10
 Meckle

Click to edit the document details