ME 375 – Spring 2011
Homework No. 3
Due: Friday, February 4
Problem No. 1 (30%)
a)
For
u t
( )
shown below, determine the Laplace transform
L
u t
( )
⎡
⎣
⎤
⎦
.
b)
If
Y s
( )
=
s
+
6
5
s
2
+
4
s
is the Laplace transform of
y t
( )
:
i.
what is
y t
=
0
(
)
?
ii.
what is
y t
→ ∞
(
)
?
c)
If
Y s
( )
=
s
+
6
5
s
2
+
4
s
is the Laplace transform of
y t
( )
, what is the Laplace
transform of
e
−
2
t
y t
( )
?
Part a):
For the function
u t
( )
:
u t
( )
=
2
h t
−
4
(
)
+
0.5
t
−
4
(
)
h t
−
4
(
)
where
h t
( )
is the unit step function. Taking the Laplace transform of
u t
( )
above gives:
L
u t
( )
⎡
⎣
⎤
⎦
=
2
L
h t
−
4
(
)
⎡
⎣
⎤
⎦
+
0.5
L
t
−
4
(
)
h t
−
4
(
)
⎡
⎣
⎤
⎦
=
2
e
−
4
s
L
h t
( )
⎡
⎣
⎤
⎦
+
0.5
e
−
4
s
L
t
[ ]
=
2
e
−
4
s
s
+
0.5
e
−
4
s
s
2
=
2
s
+
0.5
s
2
e
−
4
s
Part bi):
y t
=
0
(
)
=
lim
s
→∞
sY s
( )
⎡
⎣
⎤
⎦
=
lim
s
→∞
s s
+
6
(
)
5
s
2
+
4
s
⎡
⎣
⎢
⎤
⎦
⎥
=
lim
s
→∞
s
+
6
5
s
+
4
⎡
⎣
⎢
⎤
⎦
⎥
=
1
5
Part bii):
y t
→ ∞
(
)
=
lim
s
→
0
sY s
( )
⎡
⎣
⎤
⎦
=
lim
s
→
0
s s
+
6
(
)
5
s
2
+
4
s
⎡
⎣
⎢
⎤
⎦
⎥
=
lim
s
→
0
s
+
6
5
s
+
4
⎡
⎣
⎢
⎤
⎦
⎥
=
6
4
=
1.5
Part c):
L
e
−
2
t
y t
( )
⎡
⎣
⎤
⎦
=
Y s
+
2
(
)
=
s
+
2
(
)
+
6
5
s
+
2
(
)
2
+
4
s
+
2
(
)
=
s
+
8
5
s
2
+
24
s
+
28
2
2
This
preview
has intentionally blurred sections.
Sign up to view the full version.
Problem No. 2 (40%)
a)
Determine the solution
x t
( )
for the following differential equation with the initial
conditions of
x
0
( )
=
2
:
10
x
+
5
x
=
20
h t
( )
, where
h t
( )
is the unit step function.
b)
Determine the solution
x t
( )
for the following differential equation with the initial
conditions of
x
0
( )
=
0
and
x
0
( )
=
2
:
x
+
12
x
+
100
x
=
0
c)

This is the end of the preview.
Sign up
to
access the rest of the document.
- Fall '10
- Meckle
- Laplace, p1, p2 p2, P2 − P1
-
Click to edit the document details