{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HW5_10_solns

# HW5_10_solns - ME 563 HOMEWORK 5 SOLUTIONS Fall 2010...

This preview shows pages 1–3. Sign up to view the full content.

ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010 PROBLEM 1: You are given the lumped parameter dynamic differential equations of motion for a two degree-of- freedom model of an automobile suspension system for small rotations, with M =1,800 kg, L 1 +L 2 =3.6 m, L 1 =1.4 m, K 1 =42 kN/m, and K 2 =48 kN/m and a radius of gyration of R =1.4 m. Determine the modal frequencies, undamped natural frequencies of oscillation, and the modal vectors. The modal frequencies for this system can be found from the corresponding eigenvalue problem, which is given by: which can be solved in MATLAB to find the following eigenvalues, modal frequencies, undamped natural frequencies and eigenvectors (modal vectors): Draw schematics of the two modal vectors . Schematics of these two modal vectors are shown below.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Also give the forms for the two principal modes of vibration. The forms for the two principal modes of vibration each contain a temporal principal coordinate and a spatial modal vector. These forms are given below: Why are these modes adequate for describing general motions of the suspension system? These two modes are adequate because the principle of superposition holds for linear vibrating systems. When the differential equations of motion are re-derived in terms of the motion at point P instead of CM, which can be done relatively easily by substituting x p =x-L 1 θ , although the modal vectors are different due to the coordinate transformation, the modal frequencies are identical. The
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern