{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

example_IV_1_08

# example_IV_1_08 - Example IV.1.8 3 3 2 L 2 1 L 1 L 0...

This preview shows pages 1–3. Sign up to view the full content.

Example IV.1.8 L L L θ 1 θ 2 θ 3 μ μ μ Κ Κ Κ Φ ξ ψ 3 2 1 0 Kinematics         EOM’s   Using the standard  linearization  process (about the equilibrium  state of    ), the EOM’s become:   or   Natural Frequencies and  Modes Although  we do NOT need  the natural frequencies and  modal vectors for finding  the particular   solution, we will use them  later on when  we interpret  the response.  The eigenvalue  problem  for this example is:   where    . Using Matlab, the natural frequencies and  mass normalized  modal vectors are found  to be: 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Particular Solution  for the Response To simplify some of our algebra, we will first define a non-dimensional time,  τ,  such that:   Substituting  into the EOM’s:   where    . Particular solution:   where   Therefore,   where, by using the definition of the inverse of [H] in terms of its cofactor matrix:   where
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 4

example_IV_1_08 - Example IV.1.8 3 3 2 L 2 1 L 1 L 0...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online