example_IV_2_01

# example_IV_2_01 - Example IV.2.1 Find theparticular...

This preview shows pages 1–3. Sign up to view the full content.

Example IV.2.1 Find the particular solution  of the EOM for the system  shown  below  for  a=T/2 . f(t) F 0 -a/2 a/2 T Fourier Series   where   = 2 π /T  and       Therefore,   Remarks a) Since f(t) is an even function  of time, the sine components  of the Fourier   series make no contributions. b) Since the average value of f(t) is non-zero (positive), then   c) Since the magnitude  of the Fourier coefficients     go as:

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
we should  expect the convergence of the infinite series to be slow. d) If f(t) is a forcing that is applied  to a single-DOF damped  oscillator, the   particular solution  for the response of the oscillator will be:   where   Note that     goes as:   Therefore, the series for     goes as    . Therefore, the series for the response   converges more rapidly  than  the Fourier series for the excitation  f(t). For  not near an integer multiple of the fundamental  frequency
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 3

example_IV_2_01 - Example IV.2.1 Find theparticular...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online