Differential Equations Lecture Work Solutions 96

Differential Equations Lecture Work Solutions 96 -...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
4.3 Vibrations of a rectangular Membrane Problems 1. Solve the wave equation u tt ( x, y, t )= c 2 ( u xx ( x, y, t )+ u yy ( x, y, t )) , on the rectangle 0 <x<L , 0 <y<H subject to the initial conditions u ( x, y, 0) = f ( x, y ) , u t ( x, y, 0) = g ( x, y ) , and the boundary conditions a. u (0 ,y,t )= u x ( L, y, t )=0 , u ( x, 0 ,t )= u ( x, H, t )=0 . b. u (0 ,y,t )= u ( L, y, t )=0 , u ( x, 0 ,t )= u ( x, H, t )=0 . c. u x (0 ,y,t )= u ( L, y, t )=0 , u y ( x, 0 ,t )= u y ( x, H, t )=0 . 2. Solve the wave equation on a rectangular box 0
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: &lt; y &lt; H, &lt; z &lt; W, u tt ( x, y, z, t ) = c 2 ( u xx + u yy + u zz ) , subject to the boundary conditions u (0 , y, z, t ) = u ( L, y, z, t ) = 0 , u ( x, , z, t ) = u ( x, H, z, t ) = 0 , u ( x, y, , t ) = u ( x, y, W, t ) = 0 , and the initial conditions u ( x, y, z, 0) = f ( x, y, z ) , u t ( x, y, z, 0) = g ( x, y, z ) . 96...
View Full Document

This note was uploaded on 12/22/2011 for the course MAP 2302 taught by Professor Bell,d during the Fall '08 term at UNF.

Ask a homework question - tutors are online