Differential Equations Lecture Work Solutions 180

Differential Equations Lecture Work Solutions 180 - (a) 2 u...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
6.3 Canonical Forms Problems 1. Find the characteristic equation, characteristic curves and obtain a canonical form for each a. xu xx + u yy = x 2 b. u xx + u xy xu yy =0 ( x 0 , all y ) c. x 2 u xx +2 xyu xy + y 2 u yy + xyu x + y 2 u y =0 d. u xx + xu yy =0 e. u xx + y 2 u yy = y f. sin 2 xu xx +sin2 xu xy +cos 2 xu yy = x 2. Use Maple to plot the families of characteristic curves for each of the above. 3. Classify the following PDEs: (a) 2 u ∂t 2 + 2 u ∂x 2 + ∂u ∂x = e kt (b) 2 u ∂x 2 2 u ∂x∂y + ∂u ∂y =4 4. Find the characteristics of each of the following PDEs: (a) 2 u ∂x 2 +3 2 u ∂x∂y +2 2 u ∂y 2 =0 (b) 2 u ∂x 2 2 2 u ∂x∂y + 2 u ∂y 2 =0 5. Obtain the canonical form for the following elliptic PDEs:
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (a) 2 u x 2 + 2 u xy + 2 u y 2 = 0 (b) 2 u x 2 2 2 u xy + 5 2 u y 2 + u y = 0 6. Transform the following parabolic PDEs to canonical form: (a) 2 u x 2 6 2 u xy + 9 2 u y 2 + u x e xy = 1 (b) 2 u x 2 + 2 2 u xy + 2 u y 2 + 7 u x 8 u y = 0 180...
View Full Document

Ask a homework question - tutors are online