{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# L02 - Lecture 2 Section A.2 Exponents and Radicals Integer...

This preview shows pages 1–5. Sign up to view the full content.

Lecture 2: Section A.2 Exponents and Radicals Integer Exponents Def. If u1D44E isarealnumberand u1D45B isapositiveinteger, then u1D44E u1D45B = where u1D44E isthe base and u1D45B isthe exponent or power . ex. ( 3) 4 = 3 4 = ( 2) 3 = 2 3 = NOTE: 1) Zero exponent: If u1D44E =0, then u1D44E 0 = 2) Negative exponents: if u1D44E =0and u1D45B isapositive integer, then u1D44E u1D45B =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Properties of Exponents Let u1D44E and u1D44F be nonzero real numbers, variables, or algebraic expressions, and let u1D45A and u1D45B be integers. 1. u1D44E u1D45A u1D44E u1D45B = 2. u1D44E u1D45A u1D44E u1D45B = 3. ( u1D44Eu1D44F ) u1D45A = 4. ( u1D44E u1D45A ) u1D45B = 5. uni0028.alt02 u1D44E u1D44F uni0029.alt02 u1D45A = 6. u1D44E 2 = u1D44E 2 = u1D44E 2 NOTE: 1. uni0028.alt02 u1D44E u1D44F uni0029.alt02 u1D45A = 2. u1D44E u1D45A u1D44F u1D45B =
ex. Simplifyeachexpression,writinganswerswithout negative exponents. 1) 4 u1D44E 2 ( 3 u1D44E ) 0 ( 2 u1D44E ) 3 2) 6 u1D44Eu1D44F 4 u1D44E 3 u1D44F 2 3) (3 u1D44Eu1D44F 2 u1D450 ) 1 uni0028.alt03 2 u1D44E 2 u1D44F 1 u1D450 3 uni0029.alt03 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document