This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Review Answers– Exam 3 1. Information for the graph: Domain R ; Intercepts ( 1 , 0 ) , (- 2 , 0 ) , ( 0 ,- 3 √ 4 ) ; No asymptotes or symmetry; lim x →∞ f ( x ) = ∞ , lim x →-∞ f ( x ) =-∞ ; Increasing on (-∞ ,- 2 ) , ( 0 , 1 ) , ( 1 , ∞ ) ; Decreasing on (- 2 , 0 ) ; Local max at- 2 (cusp); Local min at (HTL); VTL at 1 ; Concave down on ( 1 , ∞ ) ; Concave up on (-∞ ,- 2 ) , (- 2 , 1 ) ; Inflection point at 1 2. Information for the graph: Increasing on ( 0 , 2 ) , ( 5 , 8 ) ; Decreasing on ( 2 , 5 ) , ( 8 , ∞ ) ; Local max at 2 and 8 ; Local min at 5 ; Concave up on ( 3 , 4 ) ; Concave down on ( 0 , 3 ) , ( 4 , 5 ) , ( 5 , ∞ ) ; Inflection points at 3 and 4 3. A = 4 ; b = ln(4)- 1 ; E (2) = e 2 4 4. Asymptotes: x =- 3 , y =- 2 ; the limit is ∞ 5. f- 1 ( x ) = 4 + e x- 2 and the limit is-∞ 6. In order from left to right: ( 0 , 2 ); x = 0 ,x = 2 x 6 = ln(2); x = ln(2) ,y = 1 2 ,y = 0 x > and x 6 = 1 e ; x = 1 e ,y = 0 7. (a) x = 3 ; (b) x = 6 8. Local min at8....
View Full Document

{[ snackBarMessage ]}