This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: E . 6. Consider f ( x ) = 1 X n =1 1 1 + n 2 x : For what values of x does the series converve absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continuous wherever the series converges? Is f bounded? 7. Prove that the series 1 X n =1 ( 1) n x 2 + n n 2 converges uniformly in every bounded interval, but does not converge absolutely for any value of x . 1 2 8. Prove the following theorem, known as Mean Value Theorem for integrals: For a continuous function f ( x ) in the interval [ a;b ] there exists a value 2 [ a;b ] such that Z b a f ( x ) dx = f ( )( b a ) :...
View
Full
Document
 Fall '09
 Garcia

Click to edit the document details