cs240a-partitioning

cs240a-partitioning - CS 240A Graph and hypergraph...

Info icon This preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
CS 240A: Graph and hypergraph partitioning Thanks to Aydin Buluc, Umit Catalyurek, Alan Edelman, and Kathy Yelick for some of these slides.
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
CS 240A: Graph and hypergraph partitioning Motivation and definitions Motivation from parallel computing Theory of graph separators Heuristics for graph partitioning Iterative swapping Spectral Geometric Multilevel Beyond graphs Shortcomings of the graph partitioning model Hypergraph models of communication in MatVec Parallel methods for partitioning hypergraphs
Image of page 2
CS 240A: Graph and hypergraph partitioning Motivation and definitions Motivation from parallel computing Theory of graph separators Heuristics for graph partitioning Iterative swapping Spectral Geometric Multilevel Beyond graphs Shortcomings of the graph partitioning model Hypergraph models of communication in MatVec Parallel methods for partitioning hypergraphs
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Sparse Matrix Vector Multiplication
Image of page 4
Definition of Graph Partitioning Given a graph G = (N, E, WN, WE) N = nodes (or vertices), E = edges WN = node weights WE = edge weights Often nodes are tasks, edges are communication, weights are costs Choose a partition N = N1 U N2 U … U NP such that Total weight of nodes in each part is “about the same” Total weight of edges connecting nodes in different parts is small Balance the work load, while minimizing communication Special case of N = N1 U N2: Graph Bisection 1 (2) 2 (2) 3 (1) 4 (3) 5 (1) 6 (2) 7 (3) 8 (1) 5 4 6 1 2 1 2 1 2 3
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Applications Telephone network design Original application, algorithm due to Kernighan Load Balancing while Minimizing Communication Sparse Matrix times Vector Multiplication Solving PDEs N = {1,…,n}, (j,k) in E if A(j,k) nonzero, W N (j) = #nonzeros in row j, W E (j,k) = 1 VLSI Layout N = {units on chip}, E = {wires}, W E (j,k) = wire length Sparse Gaussian Elimination Used to reorder rows and columns to increase parallelism, and to decrease “fill-in” Data mining and clustering Physical Mapping of DNA
Image of page 6
Partitioning by Repeated Bisection To partition into 2k parts, bisect graph recursively k times
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Separators in theory If G is a planar graph with n vertices, there exists a set of at most sqrt(6n) vertices whose removal leaves no connected component with more than 2n/3 vertices. (“Planar graphs have sqrt(n)-separators.”) “Well-shaped” finite element meshes in 3 dimensions have n 2/3 - separators. Also some others – trees, graphs of bounded genus, chordal graphs, bounded-excluded-minor graphs, … Mostly these theorems come with efficient algorithms, but they aren’t used much. “Random graphs” don’t have good separators.
Image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern